This paper presents a novel color scheme designed to address the challenge of visualizing data series with large value ranges, where scale transformation provides limited support. We focus on meteorological data, where the presence of large value ranges is common. We apply our approach to meteorological scatterplots, as one of the most common plots used in this domain area. Our approach leverages the numerical representation of mantissa and exponent of the values to guide the design of novel "nested" color schemes, able to emphasize differences between magnitudes. Our user study evaluates the new designs, the state of the art color scales and representative color schemes used in the analysis of meteorological data: ColorCrafter, Viridis, and Rainbow. We assess accuracy, time and confidence in the context of discrimination (comparison) and interpretation (reading) tasks. Our proposed color scheme significantly outperforms the others in interpretation tasks, while showing comparable performances in discrimination tasks.
The optimal error estimate that depending only on the polynomial degree of $ \varepsilon^{-1}$ is established for the temporal semi-discrete scheme of the Cahn-Hilliard equation, which is based on the scalar auxiliary variable (SAV) formulation. The key to our analysis is to convert the structure of the SAV time-stepping scheme back to a form compatible with the original format of the Cahn-Hilliard equation, which makes it feasible to use spectral estimates to handle the nonlinear term. Based on the transformation of the SAV numerical scheme, the optimal error estimate for the temporal semi-discrete scheme which depends only on the low polynomial order of $\varepsilon^{-1}$ instead of the exponential order, is derived by using mathematical induction, spectral arguments, and the superconvergence properties of some nonlinear terms. Numerical examples are provided to illustrate the discrete energy decay property and validate our theoretical convergence analysis.
In social, medical, and behavioral research we often encounter datasets with a multilevel structure and multiple correlated dependent variables. These data are frequently collected from a study population that distinguishes several subpopulations with different (i.e. heterogeneous) effects of an intervention. Despite the frequent occurrence of such data, methods to analyze them are less common and researchers often resort to either ignoring the multilevel and/or heterogeneous structure, analyzing only a single dependent variable, or a combination of these. These analysis strategies are suboptimal: Ignoring multilevel structures inflates Type I error rates, while neglecting the multivariate or heterogeneous structure masks detailed insights. To analyze such data comprehensively, the current paper presents a novel Bayesian multilevel multivariate logistic regression model. The clustered structure of multilevel data is taken into account, such that posterior inferences can be made with accurate error rates. Further, the model shares information between different subpopulations in the estimation of average and conditional average multivariate treatment effects. To facilitate interpretation, multivariate logistic regression parameters are transformed to posterior success probabilities and differences between them. A numerical evaluation compared our framework to less comprehensive alternatives and highlighted the need to model the multilevel structure: Treatment comparisons based on the multilevel model had targeted Type I error rates, while single-level alternatives resulted in inflated Type I errors. A re-analysis of the Third International Stroke Trial data illustrated how incorporating a multilevel structure, assessing treatment heterogeneity, and combining dependent variables contributed to an in-depth understanding of treatment effects.
In this paper, we develop a novel spatial variable selection method for scalar on vector-valued image regression in a multi-group setting. Here, 'vector-valued image' refers to the imaging datasets that contain vector-valued information at each pixel/voxel location, such as in RGB color images, multimodal medical images, DTI imaging, etc. The focus of this work is to identify the spatial locations in the image having an important effect on the scalar outcome measure. Specifically, the overall effect of each voxel is of interest. We thus develop a novel shrinkage prior by soft-thresholding the \ell_2 norm of a latent multivariate Gaussian process. It will allow us to estimate sparse and piecewise-smooth spatially varying vector-valued regression coefficient functions. For posterior inference, an efficient MCMC algorithm is developed. We establish the posterior contraction rate for parameter estimation and consistency for variable selection of the proposed Bayesian model, assuming that the true regression coefficients are Holder smooth. Finally, we demonstrate the advantages of the proposed method in simulation studies and further illustrate in an ADNI dataset for modeling MMSE scores based on DTI-based vector-valued imaging markers.
Do we really understand how machine classifies art styles? Historically, art is perceived and interpreted by human eyes and there are always controversial discussions over how people identify and understand art. Historians and general public tend to interpret the subject matter of art through the context of history and social factors. Style, however, is different from subject matter. Given the fact that Style does not correspond to the existence of certain objects in the painting and is mainly related to the form and can be correlated with features at different levels.(Ahmed Elgammal et al. 2018), which makes the identification and classification of the characteristics artwork's style and the "transition" - how it flows and evolves - remains as a challenge for both human and machine. In this work, a series of state-of-art neural networks and manifold learning algorithms are explored to unveil this intriguing topic: How does machine capture and interpret the flow of Art History?
To explore the limits of a stochastic gradient method, it may be useful to consider an example consisting of an infinite number of quadratic functions. In this context, it is appropriate to determine the expected value and the covariance matrix of the stochastic noise, i.e. the difference of the true gradient and the approximated gradient generated from a finite sample. When specifying the covariance matrix, the expected value of a quadratic form QBQ is needed, where Q is a Wishart distributed random matrix and B is an arbitrary fixed symmetric matrix. After deriving an expression for E(QBQ) and considering some special cases, a numerical example is used to show how these results can support the comparison of two stochastic methods.
This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.
Co-saliency detection aims to discover the common and salient foregrounds from a group of relevant images. For this task, we present a novel adaptive graph convolutional network with attention graph clustering (GCAGC). Three major contributions have been made, and are experimentally shown to have substantial practical merits. First, we propose a graph convolutional network design to extract information cues to characterize the intra- and interimage correspondence. Second, we develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion. Third, we present a unified framework with encoder-decoder structure to jointly train and optimize the graph convolutional network, attention graph cluster, and co-saliency detection decoder in an end-to-end manner. We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets (iCoseg, Cosal2015 and COCO-SEG). Our GCAGC method obtains significant improvements over the state-of-the-arts on most of them.
Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.