亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image zooming or upsampling is a widely used tool in image processing and an essential step in many algorithms. Upsampling increases the number of pixels and introduces new information into the image, which can lead to numerical effects such as ringing artifacts, aliasing effects, and blurring of the image. In this paper, we propose an efficient polynomial interpolation algorithm based on the WENO algorithm for image upsampling that provides high accuracy in smooth regions, preserves edges and reduces aliasing effects. Although this is not the first application of WENO interpolation for image resampling, it is designed to have comparable complexity and memory load with better image quality than the separable WENO algorithm. We show that the algorithm performs equally well on smooth 2D functions, artificial pixel art, and real digital images. Comparison with similar methods on test images shows good results on standard metrics and also provides visually satisfactory results. Moreover, the low complexity of the algorithm is ensured by a small local approximation stencil and the appropriate choice of smoothness indicators.

相關內容

We propose a new stabilised finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterised by degenerate diffusion. The stabilisation is constructed so that the resulting method admits a \emph{numerical hypocoercivity} property, analogous to the corresponding property of the PDE problem. More specifically, the stabilisation is constructed so that spectral gap is possible in the resulting ``stronger-than-energy'' stabilisation norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behaviour as the ``time'' variable goes to infinity. We consider both a spatially discrete version of the stabilised finite element method and a fully discrete version, with the time discretisation realised by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.

Extensions of earlier algorithms and enhanced visualization techniques for approximating a correlation matrix are presented. The visualization problems that result from using column or colum--and--row adjusted correlation matrices, which give numerically a better fit, are addressed. For visualization of a correlation matrix a weighted alternating least squares algorithm is used, with either a single scalar adjustment, or a column-only adjustment with symmetric factorization; these choices form a compromise between the numerical accuracy of the approximation and the comprehensibility of the obtained correlation biplots. Some illustrative examples are discussed.

Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion; based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked with the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they have proven equivalent. From a theoretical point of view, GNNs have been shown to be universal approximators, and their generalization capability (namely, bounds on the Vapnik Chervonekis (VC) dimension) has recently been investigated for GNNs with piecewise polynomial activation functions. The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds are provided with respect to architecture parameters (depth, number of neurons, input size) as well as with respect to the number of colors resulting from the 1-WL test applied on the graph domain. The theoretical analysis is supported by a preliminary experimental study.

Using nonlinear projections and preserving structure in model order reduction (MOR) are currently active research fields. In this paper, we provide a novel differential geometric framework for model reduction on smooth manifolds, which emphasizes the geometric nature of the objects involved. The crucial ingredient is the construction of an embedding for the low-dimensional submanifold and a compatible reduction map, for which we discuss several options. Our general framework allows capturing and generalizing several existing MOR techniques, such as structure preservation for Lagrangian- or Hamiltonian dynamics, and using nonlinear projections that are, for instance, relevant in transport-dominated problems. The joint abstraction can be used to derive shared theoretical properties for different methods, such as an exact reproduction result. To connect our framework to existing work in the field, we demonstrate that various techniques for data-driven construction of nonlinear projections can be included in our framework.

Image segmentation is a clustering task whereby each pixel is assigned a cluster label. Remote sensing data usually consists of multiple bands of spectral images in which there exist semantically meaningful land cover subregions, co-registered with other source data such as LIDAR (LIght Detection And Ranging) data, where available. This suggests that, in order to account for spatial correlation between pixels, a feature vector associated with each pixel may be a vectorized tensor representing the multiple bands and a local patch as appropriate. Similarly, multiple types of texture features based on a pixel's local patch would also be beneficial for encoding locally statistical information and spatial variations, without necessarily labelling pixel-wise a large amount of ground truth, then training a supervised model, which is sometimes impractical. In this work, by resorting to label only a small quantity of pixels, a new semi-supervised segmentation approach is proposed. Initially, over all pixels, an image data matrix is created in high dimensional feature space. Then, t-SNE projects the high dimensional data onto 3D embedding. By using radial basis functions as input features, which use the labelled data samples as centres, to pair with the output class labels, a modified canonical correlation analysis algorithm, referred to as RBF-CCA, is introduced which learns the associated projection matrix via the small labelled data set. The associated canonical variables, obtained for the full image, are applied by k-means clustering algorithm. The proposed semi-supervised RBF-CCA algorithm has been implemented on several remotely sensed multispectral images, demonstrating excellent segmentation results.

We consider the minimum weight and smallest weight minimum-size dominating set problems in vertex-weighted graphs and networks. The latter problem is a two-objective optimization problem, which is different from the classic minimum weight dominating set problem that requires finding a dominating set of the smallest weight in a graph without trying to optimize its cardinality. In other words, the objective of minimizing the size of the dominating set in the two-objective problem can be considered as a constraint, i.e. a particular case of finding Pareto-optimal solutions. First, we show how to reduce the two-objective optimization problem to the minimum weight dominating set problem by using Integer Linear Programming formulations. Then, under different assumptions, the probabilistic method is applied to obtain upper bounds on the minimum weight dominating sets in graphs. The corresponding randomized algorithms for finding small-weight dominating sets in graphs are described as well. Computational experiments are used to illustrate the results for two different types of random graphs.

We consider Maxwell eigenvalue problems on uncertain shapes with perfectly conducting TESLA cavities being the driving example. Due to the shape uncertainty, the resulting eigenvalues and eigenmodes are also uncertain and it is well known that the eigenvalues may exhibit crossings or bifurcations under perturbation. We discuss how the shape uncertainties can be modelled using the domain mapping approach and how the deformation mapping can be expressed as coefficients in Maxwell's equations. Using derivatives of these coefficients and derivatives of the eigenpairs, we follow a perturbation approach to compute approximations of mean and covariance of the eigenpairs. For small perturbations, these approximations are faster and more accurate than Monte Carlo or similar sampling-based strategies. Numerical experiments for a three-dimensional 9-cell TESLA cavity are presented.

We study the complexity (that is, the weight of the multiplication table) of the elliptic normal bases introduced by Couveignes and Lercier. We give an upper bound on the complexity of these elliptic normal bases, and we analyze the weight of some special vectors related to the multiplication table of those bases. This analysis leads us to some perspectives on the search for low complexity normal bases from elliptic periods.

Comparisons of frequency distributions often invoke the concept of shift to describe directional changes in properties such as the mean. In the present study, we sought to define shift as a property in and of itself. Specifically, we define distributional shift (DS) as the concentration of frequencies away from the discrete class having the greatest value (e.g., the right-most bin of a histogram). We derive a measure of DS using the normalized sum of exponentiated cumulative frequencies. We then define relative distributional shift (RDS) as the difference in DS between two distributions, revealing the magnitude and direction by which one distribution is concentrated to lesser or greater discrete classes relative to another. We find that RDS is highly related to popular measures that, while based on the comparison of frequency distributions, do not explicitly consider shift. While RDS provides a useful complement to other comparative measures, DS allows shift to be quantified as a property of individual distributions, similar in concept to a statistical moment.

Suitable discretizations through tensor product formulas of popular multidimensional operators (diffusion or diffusion--advection, for instance) lead to matrices with $d$-dimensional Kronecker sum structure. For evolutionary Partial Differential Equations containing such operators and integrated in time with exponential integrators, it is then of paramount importance to efficiently approximate the actions of $\varphi$-functions of the arising matrices. In this work, we show how to produce directional split approximations of third order with respect to the time step size. They conveniently employ tensor-matrix products (the so-called $\mu$-mode product and related Tucker operator, realized in practice with high performance level 3 BLAS), and allow for the effective usage of exponential Runge--Kutta integrators up to order three. The technique can also be efficiently implemented on modern computer hardware such as Graphic Processing Units. The approach has been successfully tested against state-of-the-art techniques on two well-known physical models that lead to Turing patterns, namely the 2D Schnakenberg and the 3D FitzHugh--Nagumo systems, on different architectures.

北京阿比特科技有限公司