亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel approach for the construction of bulk--surface splitting schemes for semi-linear parabolic partial differential equations with dynamic boundary conditions. The proposed construction is based on a reformulation of the system as a partial differential--algebraic equation and the inclusion of certain delay terms for the decoupling. To obtain a fully discrete scheme, the splitting approach is combined with finite elements in space and a BDF discretization in time. Within this paper, we focus on the second-order case, resulting in a $3$-step scheme. We prove second-order convergence under the assumption of a weak CFL-type condition and confirm the theoretical findings by numerical experiments. Moreover, we illustrate the potential for higher-order splitting schemes numerically.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Quantized constant envelope (QCE) precoding, a new transmission scheme that only discrete QCE transmit signals are allowed at each antenna, has gained growing research interests due to its ability of reducing the hardware cost and the energy consumption of massive multiple-input multiple-output (MIMO) systems. However, the discrete nature of QCE transmit signals greatly complicates the precoding design. In this paper, we consider the QCE precoding problem for a massive MIMO system with phase shift keying (PSK) modulation and develop an efficient approach for solving the constructive interference (CI) based problem formulation. Our approach is based on a custom-designed (continuous) penalty model that is equivalent to the original discrete problem. Specifically, the penalty model relaxes the discrete QCE constraint and penalizes it in the objective with a negative $\ell_2$-norm term, which leads to a non-smooth non-convex optimization problem. To tackle it, we resort to our recently proposed alternating optimization (AO) algorithm. We show that the AO algorithm admits closed-form updates at each iteration when applied to our problem and thus can be efficiently implemented. Simulation results demonstrate the superiority of the proposed approach over the existing algorithms.

Inverse problems constrained by partial differential equations (PDEs) play a critical role in model development and calibration. In many applications, there are multiple uncertain parameters in a model that must be estimated. However, high dimensionality of the parameters and computational complexity of the PDE solves make such problems challenging. A common approach is to reduce the dimension by fixing some parameters (which we will call auxiliary parameters) to a best estimate and use techniques from PDE-constrained optimization to estimate the other parameters. In this article, hyper-differential sensitivity analysis (HDSA) is used to assess the sensitivity of the solution of the PDE-constrained optimization problem to changes in the auxiliary parameters. Foundational assumptions for HDSA require satisfaction of the optimality conditions which are not always practically feasible as a result of ill-posedness in the inverse problem. We introduce novel theoretical and computational approaches to justify and enable HDSA for ill-posed inverse problems by projecting the sensitivities on likelihood informed subspaces and defining a posteriori updates. Our proposed framework is demonstrated on a nonlinear multi-physics inverse problem motivated by estimation of spatially heterogenous material properties in the presence of spatially distributed parametric modeling uncertainties.

The utilization of renewable energy technologies, particularly hydrogen, has seen a boom in interest and has spread throughout the world. Ethanol steam reformation is one of the primary methods capable of producing hydrogen efficiently and reliably. This paper provides an in-depth study of the reformulated system both theoretically and numerically, as well as a plan to explore the possibility of converting the system into its conservation form. Lastly, we offer an overview of several numerical approaches for solving the general first-order quasi-linear hyperbolic equation to the particular model for ethanol steam reforming (ESR). We conclude by presenting some results that would enable the usage of these ODE/PDE solvers to be used in non-linear model predictive control (NMPC) algorithms and discuss the limitations of our approach and directions for future work.

Imposition methods of interface conditions for the second-order wave equation with non-conforming grids is considered. The spatial discretization is based on high order finite differences with summation-by-parts properties. Previously presented solution methods for this problem, based on the simultaneous approximation term (SAT) method, have shown to introduce significant stiffness. This can lead to highly inefficient schemes. Here, two new methods of imposing the interface conditions to avoid the stiffness problems are presented: 1) a projection method and 2) a hybrid between the projection method and the SAT method. Numerical experiments are performed using traditional and order-preserving interpolation operators. Both of the novel methods retain the accuracy and convergence behavior of the previously developed SAT method but are significantly less stiff.

We propose and analyze exact and inexact regularized Newton-type methods for finding a global saddle point of a \textit{convex-concave} unconstrained min-max optimization problem. Compared to their first-order counterparts, investigations of second-order methods for min-max optimization are relatively limited, as obtaining global rates of convergence with second-order information is much more involved. In this paper, we highlight how second-order information can be used to speed up the dynamics of dual extrapolation methods {despite inexactness}. Specifically, we show that the proposed algorithms generate iterates that remain within a bounded set and the averaged iterates converge to an $\epsilon$-saddle point within $O(\epsilon^{-2/3})$ iterations in terms of a gap function. Our algorithms match the theoretically established lower bound in this context and our analysis provides a simple and intuitive convergence analysis for second-order methods without requiring any compactness assumptions. Finally, we present a series of numerical experiments on synthetic and real data that demonstrate the efficiency of the proposed algorithms.

In this work, we propose solving the Information bottleneck (IB) and Privacy Funnel (PF) problems with Douglas-Rachford Splitting methods (DRS). We study a general Markovian information-theoretic Lagrangian that includes IB and PF into a unified framework. We prove the linear convergence of the proposed solvers using the Kurdyka-{\L}ojasiewicz inequality. Moreover, our analysis is beyond IB and PF and applies to any convex-weakly convex pair objectives. Based on the results, we develop two types of linearly convergent IB solvers, with one improves the performance of convergence over existing solvers while the other can be independent to the relevance-compression trade-off. Moreover, our results apply to PF, yielding a new class of linearly convergent PF solvers. Empirically, the proposed IB solvers IB obtain solutions that are comparable to the Blahut-Arimoto-based benchmark and is convergent for a wider range of the penalty coefficient than existing solvers. For PF, our non-greedy solvers can characterize the privacy-utility trade-off better than the clustering-based greedy solvers.

V. Levenshtein first proposed the sequence reconstruction problem in 2001. This problem studies the model where the same sequence from some set is transmitted over multiple channels, and the decoder receives the different outputs. Assume that the transmitted sequence is at distance $d$ from some code and there are at most $r$ errors in every channel. Then the sequence reconstruction problem is to find the minimum number of channels required to recover exactly the transmitted sequence that has to be greater than the maximum intersection between two metric balls of radius $r$, where the distance between their centers is at least $d$. In this paper, we study the sequence reconstruction problem of permutations under the Hamming distance. In this model, we define a Cayley graph and find the exact value of the largest intersection of two metric balls in this graph under the Hamming distance for $r=4$ with $d\geqslant 5$, and for $d=2r$.

The paper proposes a decoupled numerical scheme of the time-dependent Ginzburg-Landau equations under temporal gauge. For the order parameter and the magnetic potential, the discrete scheme adopts the second type Ned${\rm \acute{e}}$lec element and the linear element for spatial discretization, respectively, and a fully linearized backward Euler method and the first order exponential time differencing method for time discretization, respectively. The maximum bound principle of the order parameter and the energy dissipation law in the discrete sense are proved for this finite element-based scheme. This allows the application of the adaptive time stepping method which can significantly speed up long-time simulations compared to existing numerical schemes, especially for superconductors with complicated shapes. The error estimate is rigorously established in the fully discrete sense. Numerical examples verify the theoretical results of the proposed scheme and demonstrate the vortex motions of superconductors in an external magnetic field.

In group testing, the goal is to identify a subset of defective items within a larger set of items based on tests whose outcomes indicate whether at least one defective item is present. This problem is relevant in areas such as medical testing, DNA sequencing, communication protocols, and many more. In this paper, we study (i) a sparsity-constrained version of the problem, in which the testing procedure is subjected to one of the following two constraints: items are finitely divisible and thus may participate in at most $\gamma$ tests; or tests are size-constrained to pool no more than $\rho$ items per test; and (ii) a noisy version of the problem, where each test outcome is independently flipped with some constant probability. Under each of these settings, considering the for-each recovery guarantee with asymptotically vanishing error probability, we introduce a fast splitting algorithm and establish its near-optimality not only in terms of the number of tests, but also in terms of the decoding time. While the most basic formulations of our algorithms require $\Omega(n)$ storage for each algorithm, we also provide low-storage variants based on hashing, with similar recovery guarantees.

We consider inverse problems in Hilbert spaces under correlated Gaussian noise and use a Bayesian approach to find their regularised solution. We focus on mildly ill-posed inverse problems with the noise being generalised derivative of fractional Brownian motion, using a novel wavelet - based approach we call vaguelette-vaguelette. It allows us to apply sequence space methods without assuming that all operators are simultaneously diagonalisable. The results are proved for more general bases and covariance operators. Our primary aim is to study the posterior contraction rate in such inverse problems over Sobolev classes of true functions, comparing it to the derived minimax rate. Secondly, we study the effect of plugging in a consistent estimator of variances in sequence space on the posterior contraction rate, for instance where there are repeated observations. This result is also applied to the problem where the forward operator is observed with error. Thirdly, we show that an adaptive empirical Bayes posterior distribution contracts at the optimal rate, in the minimax sense, under a condition on prior smoothness, with a plugged in maximum marginal likelihood estimator of the prior scale. These theoretical results are illustrated on simulated data.

北京阿比特科技有限公司