We analyze a general problem in a crowd-sourced setting where one user asks a question (also called item) and other users return answers (also called labels) for this question. Different from existing crowd sourcing work which focuses on finding the most appropriate label for the question (the "truth"), our problem is to determine a ranking of the users based on their ability to answer questions. We call this problem "ability discovery" to emphasize the connection to and duality with the more well-studied problem of "truth discovery". To model items and their labels in a principled way, we draw upon Item Response Theory (IRT) which is the widely accepted theory behind standardized tests such as SAT and GRE. We start from an idealized setting where the relative performance of users is consistent across items and better users choose better fitting labels for each item. We posit that a principled algorithmic solution to our more general problem should solve this ideal setting correctly and observe that the response matrices in this setting obey the Consecutive Ones Property (C1P). While C1P is well understood algorithmically with various discrete algorithms, we devise a novel variant of the HITS algorithm which we call "HITSNDIFFS" (or HND), and prove that it can recover the ideal C1P-permutation in case it exists. Unlike fast combinatorial algorithms for finding the consecutive ones permutation (if it exists), HND also returns an ordering when such a permutation does not exist. Thus it provides a principled heuristic for our problem that is guaranteed to return the correct answer in the ideal setting. Our experiments show that HND produces user rankings with robustly high accuracy compared to state-of-the-art truth discovery methods. We also show that our novel variant of HITS scales better in the number of users than ABH, the only prior spectral C1P reconstruction algorithm.
Demonstration ordering, which is an important strategy for in-context learning (ICL), can significantly affects the performance of large language models (LLMs). However, most of the current approaches of ordering require additional knowledge and similarity calculation. We advocate the few-shot in-context curriculum learning (ICCL), a simple but effective demonstration ordering method for ICL, which implies gradually increasing the complexity of prompt demonstrations during the inference process. Then we design three experiments to discuss the effectiveness of ICCL, the formation mechanism of LLM's ICCL capability, and the impact of ordering subjects. Experimental results demonstrate that ICCL, developed during the instruction-tuning stage, is effective for open-source LLMs. Moreover, LLMs exhibit a weaker capacity compared to humans in discerning the difficulty levels of demonstrations. We release our code at //github.com/61peng/curri_learning.
Social reward as a form of community recognition provides a strong source of motivation for users of online platforms to engage and contribute with content. The recent progress of text-conditioned image synthesis has ushered in a collaborative era where AI empowers users to craft original visual artworks seeking community validation. Nevertheless, assessing these models in the context of collective community preference introduces distinct challenges. Existing evaluation methods predominantly center on limited size user studies guided by image quality and prompt alignment. This work pioneers a paradigm shift, unveiling Social Reward - an innovative reward modeling framework that leverages implicit feedback from social network users engaged in creative editing of generated images. We embark on an extensive journey of dataset curation and refinement, drawing from Picsart: an online visual creation and editing platform, yielding a first million-user-scale dataset of implicit human preferences for user-generated visual art named Picsart Image-Social. Our analysis exposes the shortcomings of current metrics in modeling community creative preference of text-to-image models' outputs, compelling us to introduce a novel predictive model explicitly tailored to address these limitations. Rigorous quantitative experiments and user study show that our Social Reward model aligns better with social popularity than existing metrics. Furthermore, we utilize Social Reward to fine-tune text-to-image models, yielding images that are more favored by not only Social Reward, but also other established metrics. These findings highlight the relevance and effectiveness of Social Reward in assessing community appreciation for AI-generated artworks, establishing a closer alignment with users' creative goals: creating popular visual art. Codes can be accessed at //github.com/Picsart-AI-Research/Social-Reward
Web end-to-end (e2e) testing evaluates the workflow of a web application. It simulates real-world user scenarios to ensure the application flows behave as expected. However, web e2e tests are notorious for being flaky, i.e., the tests can produce inconsistent results despite no changes to the code. One common type of flakiness is caused by nondeterministic execution orders between the test code and the client-side code under test. In particular, UI-based flakiness emerges as a notably prevalent and challenging issue to fix because the test code has limited knowledge about the client-side code execution. In this paper, we propose WEFix, a technique that can automatically generate fix code for UI-based flakiness in web e2e testing. The core of our approach is to leverage browser UI changes to predict the client-side code execution and generate proper wait oracles. We evaluate the effectiveness and efficiency of WEFix against 122 web e2e flaky tests from seven popular real-world projects. Our results show that WEFix dramatically reduces the overhead (from 3.7$\times$ to 1.25$\times$) while achieving a high correctness (98%).
Multimodal hateful content detection is a challenging task that requires complex reasoning across visual and textual modalities. Therefore, creating a meaningful multimodal representation that effectively captures the interplay between visual and textual features through intermediate fusion is critical. Conventional fusion techniques are unable to attend to the modality-specific features effectively. Moreover, most studies exclusively concentrated on English and overlooked other low-resource languages. This paper proposes a context-aware attention framework for multimodal hateful content detection and assesses it for both English and non-English languages. The proposed approach incorporates an attention layer to meaningfully align the visual and textual features. This alignment enables selective focus on modality-specific features before fusing them. We evaluate the proposed approach on two benchmark hateful meme datasets, viz. MUTE (Bengali code-mixed) and MultiOFF (English). Evaluation results demonstrate our proposed approach's effectiveness with F1-scores of $69.7$% and $70.3$% for the MUTE and MultiOFF datasets. The scores show approximately $2.5$% and $3.2$% performance improvement over the state-of-the-art systems on these datasets. Our implementation is available at //github.com/eftekhar-hossain/Bengali-Hateful-Memes.
Prior studies on the emergence in large models have primarily focused on how the functional capabilities of large language models (LLMs) scale with model size. Our research, however, transcends this traditional paradigm, aiming to deepen our understanding of the emergence within LLMs by placing a special emphasis not just on the model size but more significantly on the complex behavior of neuron interactions during the training process. By introducing the concepts of "self-organization" and "multifractal analysis," we explore how neuron interactions dynamically evolve during training, leading to "emergence," mirroring the phenomenon in natural systems where simple micro-level interactions give rise to complex macro-level behaviors. To quantitatively analyze the continuously evolving interactions among neurons in large models during training, we propose the Neuron-based Multifractal Analysis (NeuroMFA). Utilizing NeuroMFA, we conduct a comprehensive examination of the emergent behavior in LLMs through the lens of both model size and training process, paving new avenues for research into the emergence in large models.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.