亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years decentralized currencies developed through Blockchains are increasingly becoming popular because of their transparent nature and absence of a central controlling authority. Though a lot of computation power, disk space, and energy are being used to run this system, most of these resources are dedicated to just keeping the bad actors away by using Proof of Work, Proof of Stake, Proof of Space, etc., consensus. In this paper, we discuss a way to combine those consensus mechanism and modify the defense system to create actual values for the end-users by providing a solution for securely storing their data in a decentralized manner without compromising the integrity of the blockchain.

相關內容

CRYPTO:International Cryptology Conference。 Explanation:國際密(mi)碼學(xue)會議。 Publisher:Springer。 SIT:

This paper addresses the important need for advanced techniques in continuously allocating workloads on shared infrastructures in data centers, a problem arising due to the growing popularity and scale of cloud computing. It particularly emphasizes the scarcity of research ensuring guaranteed capacity in capacity reservations during large-scale failures. To tackle these issues, the paper presents scalable solutions for resource management. It builds on the prior establishment of capacity reservation in cluster management systems and the two-level resource allocation problem addressed by the Resource Allowance System (RAS). Recognizing the limitations of Mixed Integer Linear Programming (MILP) for server assignment in a dynamic environment, this paper proposes the use of Deep Reinforcement Learning (DRL), which has been successful in achieving long-term optimal results for time-varying systems. A novel two-level design that utilizes a DRL-based algorithm is introduced to solve optimal server-to-reservation assignment, taking into account of fault tolerance, server movement minimization, and network affinity requirements due to the impracticality of directly applying DRL algorithms to large-scale instances with millions of decision variables. The paper explores the interconnection of these levels and the benefits of such an approach for achieving long-term optimal results in the context of large-scale cloud systems. We further show in the experiment section that our two-level DRL approach outperforms the MIP solver and heuristic approaches and exhibits significantly reduced computation time compared to the MIP solver. Specifically, our two-level DRL approach performs 15% better than the MIP solver on minimizing the overall cost. Also, it uses only 26 seconds to execute 30 rounds of decision making, while the MIP solver needs nearly an hour.

High-end components that conduct complicated tasks automatically are a part of modern industrial systems. However, in order for these parts to function at the desired level, they need to be maintained by qualified experts. Solutions based on Augmented Reality (AR) have been established with the goal of raising production rates and quality while lowering maintenance costs. With the introduction of two unique interaction interfaces based on wearable targets and human face orientation, we are proposing hands-free advanced interactive solutions in this study with the goal of reducing the bias towards certain users. Using traditional devices in real time, a comparison investigation using alternative interaction interfaces is conducted. The suggested solutions are supported by various AI powered methods such as novel gravity-map based motion adjustment that is made possible by predictive deep models that reduce the bias of traditional hand- or finger-based interaction interfaces

Data science is not a science. It is a research paradigm. Its power, scope, and scale will surpass science, our most powerful research paradigm, to enable knowledge discovery and change our world. We have yet to understand and define it, vital to realizing its potential and managing its risks. Modern data science is in its infancy. Emerging slowly since 1962 and rapidly since 2000, it is a fundamentally new field of inquiry, one of the most active, powerful, and rapidly evolving 21st century innovations. Due to its value, power, and applicability, it is emerging in 40+ disciplines, hundreds of research areas, and thousands of applications. Millions of data science publications contain myriad definitions of data science and data science problem solving. Due to its infancy, many definitions are independent, application-specific, mutually incomplete, redundant, or inconsistent, hence so is data science. This research addresses this data science multiple definitions challenge by proposing the development of coherent, unified definition based on a data science reference framework using a data science journal for the data science community to achieve such a definition. This paper provides candidate definitions for essential data science artifacts that are required to discuss such a definition. They are based on the classical research paradigm concept consisting of a philosophy of data science, the data science problem solving paradigm, and the six component data science reference framework (axiology, ontology, epistemology, methodology, methods, technology) that is a frequently called for unifying framework with which to define, unify, and evolve data science. It presents challenges for defining data science, solution approaches, i.e., means for defining data science, and their requirements and benefits as the basis of a comprehensive solution.

Data constraints are fundamental for practical data modelling, and a verifiable conformance of a data instance to a safety-critical constraint (satisfaction relation) is a corner-stone of safety assurance. Diagrammatic constraints are important as both a theoretical concepts and a practically convenient device. The paper shows that basic formal constraint management can well be developed within a finitely complete category (hence the reference to Cartesianity in the title). In the data modelling context, objects of such a category can be thought of as graphs, while their morphisms play two roles: of data instances and (when being additionally labelled) of constraints. Specifically, a generalized sketch $S$ consists of a graph $G_S$ and a set of constraints $C_S$ declared over $G_S$, and appears as a pattern for typical data schemas (in databases, XML, and UML class diagrams). Interoperability of data modelling frameworks (and tools based on them) very much depends on the laws regulating the transformation of satisfaction relations between data instances and schemas when the schema graph changes: then constraints are translated co- whereas instances contra-variantly. Investigation of this transformation pattern is the main mathematical subject of the paper

Classification of unlabeled data is usually achieved by supervised learning from labeled samples. Although there exist many sophisticated supervised machine learning methods that can predict the missing labels with a high level of accuracy, they often lack the required transparency in situations where it is important to provide interpretable results and meaningful measures of confidence. Body fluid classification of forensic casework data is the case in point. We develop a new Biclustering Dirichlet Process (BDP), with a three-level hierarchy of clustering, and a model-based approach to classification which adapts to block structure in the data matrix. As the class labels of some observations are missing, the number of rows in the data matrix for each class is unknown. The BDP handles this and extends existing biclustering methods by simultaneously biclustering multiple matrices each having a randomly variable number of rows. We demonstrate our method by applying it to the motivating problem, which is the classification of body fluids based on mRNA profiles taken from crime scenes. The analyses of casework-like data show that our method is interpretable and produces well-calibrated posterior probabilities. Our model can be more generally applied to other types of data with a similar structure to the forensic data.

There has been growing interest in using the QUIC transport protocol for the Internet of Things (IoT). In lossy and high latency networks, QUIC outperforms TCP and TLS. Since IoT greatly differs from traditional networks in terms of architecture and resources, IoT specific parameter tuning has proven to be of significance. While RFC 9006 offers a guideline for tuning TCP within IoT, we have not found an equivalent for QUIC. This paper is the first of our knowledge to contribute empirically based insights towards tuning QUIC for IoT. We improved our pure HTTP/3 publish-subscribe architecture and rigorously benchmarked it against an alternative: MQTT-over-QUIC. To investigate the impact of transport-layer parameters, we ran both applications on Raspberry Pi Zero hardware. Eight metrics were collected while emulating different network conditions and message payloads. We enumerate the points we experimentally identified (notably, relating to authentication, MAX\_STREAM messages, and timers) and elaborate on how they can be tuned to improve resource consumption and performance. Our application offered lower latency than MQTT-over-QUIC with slightly higher resource consumption, making it preferable for reliable time-sensitive dissemination of information.

Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.

北京阿比特科技有限公司