亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vine pair-copula constructions exist for a mix of continuous and ordinal variables. In some steps, this can involve estimating a bivariate copula for a pair of mixed continuous-ordinal variables. To assess the adequacy of copula fits for such a pair, diagnostic and visualization methods based on normal score plots and conditional Q-Q plots are proposed. The former utilizes a latent continuous variable for the ordinal variable. Using the Kullback-Leibler divergence, existing probability models for mixed continuous-ordinal variable pair are assessed for the adequacy of fit with simple parametric copula families. The effectiveness of the proposed visualization and diagnostic methods is illustrated on simulated and real datasets.

相關內容

We hereby present a solution to a semantic textual similarity (STS) problem in which it is necessary to match two sentences containing, as the only distinguishing factor, highly specific information (such as names, addresses, identification codes), and from which we need to derive a definition for when they are similar and when they are not. The solution revolves around the use of a neural network, based on the siamese architecture, to create the distributions of the distances between similar and dissimilar pairs of sentences. The goal of these distributions is to find a discriminating factor, that we call "threshold", which represents a well-defined quantity that can be used to distinguish vector distances of similar pairs from vector distances of dissimilar pairs in new predictions and later analyses. In addition, we developed a way to score the predictions by combining attributes from both the distributions' features and the way the distance function works. Finally, we generalize the results showing that they can be transferred to a wider range of domains by applying the system discussed to a well-known and widely used benchmark dataset for STS problems.

Incomplete LU (ILU) smoothers are effective in the algebraic multigrid (AMG) $V$-cycle for reducing high-frequency components of the error. However, the requisite direct triangular solves are comparatively slow on GPUs. Previous work has demonstrated the advantages of Jacobi iteration as an alternative to direct solution of these systems. Depending on the threshold and fill-level parameters chosen, the factors can be highly non-normal and Jacobi is unlikely to converge in a low number of iterations. We demonstrate that row scaling can reduce the departure from normality, allowing us to replace the inherently sequential solve with a rapidly converging Richardson iteration. There are several advantages beyond the lower compute time. Scaling is performed locally for a diagonal block of the global matrix because it is applied directly to the factor. Further, an ILUT Schur complement smoother maintains a constant GMRES iteration count as the number of MPI ranks increases, and thus parallel strong-scaling is improved. Our algorithms have been incorporated into hypre, and we demonstrate improved time to solution for linear systems arising in the Nalu-Wind and PeleLM pressure solvers. For large problem sizes, GMRES$+$AMG executes at least five times faster when using iterative triangular solves compared with direct solves on massively-parallel GPUs.

In everyday conversations, humans can take on different roles and adapt their vocabulary to their chosen roles. We explore whether LLMs can take on, that is impersonate, different roles when they generate text in-context. We ask LLMs to assume different personas before solving vision and language tasks. We do this by prefixing the prompt with a persona that is associated either with a social identity or domain expertise. In a multi-armed bandit task, we find that LLMs pretending to be children of different ages recover human-like developmental stages of exploration. In a language-based reasoning task, we find that LLMs impersonating domain experts perform better than LLMs impersonating non-domain experts. Finally, we test whether LLMs' impersonations are complementary to visual information when describing different categories. We find that impersonation can improve performance: an LLM prompted to be a bird expert describes birds better than one prompted to be a car expert. However, impersonation can also uncover LLMs' biases: an LLM prompted to be a man describes cars better than one prompted to be a woman. These findings demonstrate that LLMs are capable of taking on diverse roles and that this in-context impersonation can be used to uncover their hidden strengths and biases.

Deep generative modeling of natural languages has achieved many successes, such as producing fluent sentences and translating from one language into another. However, the development of generative modeling techniques for paraphrase generation still lags behind largely due to the challenges in addressing the complex conflicts between expression diversity and semantic preservation. This paper proposes to generate diverse and high-quality paraphrases by exploiting the pre-trained models with instance-dependent prompts. To learn generalizable prompts, we assume that the number of abstract transforming patterns of paraphrase generation (governed by prompts) is finite and usually not large. Therefore, we present vector-quantized prompts as the cues to control the generation of pre-trained models. Extensive experiments demonstrate that the proposed method achieves new state-of-art results on three benchmark datasets, including Quora, Wikianswers, and MSCOCO. We will release all the code upon acceptance.

We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in //github.com/radarFudan/Curse-of-memory

Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This representation method can also maintain the flexibility of language. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR employs the diffusion model and the pre-trained language model (e.g., T5 and CLIP). We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into image SR, yields excellent results on both synthetic and real-world images. Code: //github.com/zhengchen1999/PromptSR.

We present a novel Graph-based debiasing Algorithm for Underreported Data (GRAUD) aiming at an efficient joint estimation of event counts and discovery probabilities across spatial or graphical structures. This innovative method provides a solution to problems seen in fields such as policing data and COVID-$19$ data analysis. Our approach avoids the need for strong priors typically associated with Bayesian frameworks. By leveraging the graph structures on unknown variables $n$ and $p$, our method debiases the under-report data and estimates the discovery probability at the same time. We validate the effectiveness of our method through simulation experiments and illustrate its practicality in one real-world application: police 911 calls-to-service data.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司