亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate net load forecasting is vital for energy planning, aiding decisions on trade and load distribution. However, assessing the performance of forecasting models across diverse input variables, like temperature and humidity, remains challenging, particularly for eliciting a high degree of trust in the model outcomes. In this context, there is a growing need for data-driven technological interventions to aid scientists in comprehending how models react to both noisy and clean input variables, thus shedding light on complex behaviors and fostering confidence in the outcomes. In this paper, we present Forte, a visual analytics-based application to explore deep probabilistic net load forecasting models across various input variables and understand the error rates for different scenarios. With carefully designed visual interventions, this web-based interface empowers scientists to derive insights about model performance by simulating diverse scenarios, facilitating an informed decision-making process. We discuss observations made using Forte and demonstrate the effectiveness of visualization techniques to provide valuable insights into the correlation between weather inputs and net load forecasts, ultimately advancing grid capabilities by improving trust in forecasting models.

相關內容

FORTE:Formal Techniques for Networked and Distributed Systems。 Explanation:網絡(luo)化和(he)分布式(shi)系統的形式(shi)化技(ji)術。 Publisher:Springer。 SIT:

Wireless powered communication (WPC) involves the integration of energy harvesting and data transmission. This allows devices to communicate without constant battery replacements or wired power sources. Reconfigurable intelligent surfaces (RISs) can dynamically manipulate radio signals. In this paper, we explore the use of active elements to mitigate double-fading challenges inherent in RIS-aided links. We enhance the reliability performance for an energy-constrained user by combining active RIS and WPC. The theoretical closed-form analysis, which includes transmission rate, harvested energy, and outage probability, provides valuable insights that inform parameter selection.

Training deep neural networks (DNNs) requires large datasets and powerful computing resources, which has led some owners to restrict redistribution without permission. Watermarking techniques that embed confidential data into DNNs have been used to protect ownership, but these can degrade model performance and are vulnerable to watermark removal attacks. Recently, DeepJudge was introduced as an alternative approach to measuring the similarity between a suspect and a victim model. While DeepJudge shows promise in addressing the shortcomings of watermarking, it primarily addresses situations where the suspect model copies the victim's architecture. In this study, we introduce DeepTaster, a novel DNN fingerprinting technique, to address scenarios where a victim's data is unlawfully used to build a suspect model. DeepTaster can effectively identify such DNN model theft attacks, even when the suspect model's architecture deviates from the victim's. To accomplish this, DeepTaster generates adversarial images with perturbations, transforms them into the Fourier frequency domain, and uses these transformed images to identify the dataset used in a suspect model. The underlying premise is that adversarial images can capture the unique characteristics of DNNs built with a specific dataset. To demonstrate the effectiveness of DeepTaster, we evaluated the effectiveness of DeepTaster by assessing its detection accuracy on three datasets (CIFAR10, MNIST, and Tiny-ImageNet) across three model architectures (ResNet18, VGG16, and DenseNet161). We conducted experiments under various attack scenarios, including transfer learning, pruning, fine-tuning, and data augmentation. Specifically, in the Multi-Architecture Attack scenario, DeepTaster was able to identify all the stolen cases across all datasets, while DeepJudge failed to detect any of the cases.

Out-of-distribution (OOD) detection plays a crucial role in ensuring the security of neural networks. Existing works have leveraged the fact that In-distribution (ID) samples form a subspace in the feature space, achieving state-of-the-art (SOTA) performance. However, the comprehensive characteristics of the ID subspace still leave under-explored. Recently, the discovery of Neural Collapse ($\mathcal{NC}$) sheds light on novel properties of the ID subspace. Leveraging insight from $\mathcal{NC}$, we observe that the Principal Angle between the features and the ID feature subspace forms a superior representation for measuring the likelihood of OOD. Building upon this observation, we propose a novel $\mathcal{NC}$-inspired OOD scoring function, named Entropy-enhanced Principal Angle (EPA), which integrates both the global characteristic of the ID subspace and its inner property. We experimentally compare EPA with various SOTA approaches, validating its superior performance and robustness across different network architectures and OOD datasets.

Crowd counting has gained significant popularity due to its practical applications. However, mainstream counting methods ignore precise individual localization and suffer from annotation noise because of counting from estimating density maps. Additionally, they also struggle with high-density images.To address these issues, we propose an end-to-end model called Fine-Grained Extraction Network (FGENet). Different from methods estimating density maps, FGENet directly learns the original coordinate points that represent the precise localization of individuals.This study designs a fusion module, named Fine-Grained Feature Pyramid(FGFP), that is used to fuse feature maps extracted by the backbone of FGENet. The fused features are then passed to both regression and classification heads, where the former provides predicted point coordinates for a given image, and the latter determines the confidence level for each predicted point being an individual. At the end, FGENet establishes correspondences between prediction points and ground truth points by employing the Hungarian algorithm. For training FGENet, we design a robust loss function, named Three-Task Combination (TTC), to mitigate the impact of annotation noise. Extensive experiments are conducted on four widely used crowd counting datasets. Experimental results demonstrate the effectiveness of FGENet. Notably, our method achieves a remarkable improvement of 3.14 points in Mean Absolute Error (MAE) on the ShanghaiTech Part A dataset, showcasing its superiority over the existing state-of-the-art methods. Even more impressively, FGENet surpasses previous benchmarks on the UCF\_CC\_50 dataset with an astounding enhancement of 30.16 points in MAE.

Large language models (LLMs) such as ChatGPT have demonstrated unprecedented capabilities in multiple AI tasks. However, hardware inefficiencies have become a significant factor limiting the democratization of LLMs. We propose Chiplet Cloud, an ASIC supercomputer architecture that optimizes total cost of ownership (TCO) per token for serving generative LLMs. Chiplet Cloud fits all model parameters inside the on-chip SRAMs to eliminate bandwidth limitations while moderating the die size to improve system costs while leveraging software mappings to overcome data communication overhead. We propose a comprehensive design methodology that accurately explores a spectrum of major design trade-offs in the joint space of hardware-software and generates a detailed performance-cost analysis on all valid design points. We evaluate Chiplet Cloud on four popular LLMs. Compared to GPU and TPU, our architecture can achieve up to 94x and 15x improvement in TCO/Token respectively, significantly reducing the cost for realistically serving modern LLMs.

Wind is one kind of high-efficient, environmentally-friendly and cost-effective energy source. Wind power, as one of the largest renewable energy in the world, has been playing a more and more important role in supplying electricity. Though growing dramatically in recent years, the amount of generated wind power can be directly or latently affected by multiple uncertain factors, such as wind speed, wind direction, temperatures, etc. More importantly, there exist very complicated dependencies of the generated power on the latent composition of these multiple time-evolving variables, which are always ignored by existing works and thus largely hinder the prediction performances. To this end, we propose DEWP, a novel Deep Expansion learning for Wind Power forecasting framework to carefully model the complicated dependencies with adequate expressiveness. DEWP starts with a stack-by-stack architecture, where each stack is composed of (i) a variable expansion block that makes use of convolutional layers to capture dependencies among multiple variables; (ii) a time expansion block that applies Fourier series and backcast/forecast mechanism to learn temporal dependencies in sequential patterns. These two tailored blocks expand raw inputs into different latent feature spaces which can model different levels of dependencies of time-evolving sequential data. Moreover, we propose an inference block corresponding for each stack, which applies multi-head self-attentions to acquire attentive features and maps expanded latent representations into generated wind power. In addition, to make DEWP more expressive in handling deep neural architectures, we adapt doubly residue learning to process stack-by-stack outputs. Finally, we present extensive experiments in the real-world wind power forecasting application on two datasets from two different turbines to demonstrate the effectiveness of our approach.

Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

北京阿比特科技有限公司