The intersection between security and continuous software engineering has been of great interest since the early years of the agile development movement, and it remains relevant as software development processes are more frequently guided by agility and the adoption of DevOps. Several authors have contributed studies about the framing of secure agile development and secure DevOps, motivating academic contributions to methods and practices, but also discussions around benefits and challenges. Especially the challenges captured also our interest since, for the last few years, we are conducting research on secure continuous software engineering from a more applied, practical perspective with the overarching aim to introduce solutions that can be adopted at scale. The short positioning at hands summarizes a relevant part of our endeavors in which we validated challenges with several practitioners of different roles. More than framing a set of challenges, we conclude by presenting four key research directions we identified for practitioners and researchers to delineate future work.
Whereas distributed computing research has been very successful in exploring the solvability/impossibility border of distributed computing problems like consensus in representative classes of computing models with respect to model parameters like failure bounds, this is not the case for characterizing necessary and sufficient communication requirements. In this paper, we introduce network abstractions as a novel approach for modeling communication requirements in asynchronous distributed systems. A network abstraction of a run is a sequence of directed graphs on the set of processes, where the $i$-th graph defines the potential message chains that may arise in the $i$-th portion of the run. Formally, it is defined via associating (potential) message sending times with the corresponding message receiving times in a message schedule. Network abstractions allow to reason about the future causal cones that might arise in a run, hence also facilitate reasoning about liveness properties, and are inherently compatible with temporal epistemic reasoning frameworks. We demonstrate the utility of our approach by providing necessary and sufficient network abstractions for solving the canonical firing rebels with relay (FRR) problem, and variants thereof, in asynchronous systems with up to $f$ byzantine processes. FRR is not only a basic primitive in clock synchronization and consensus algorithms, but also integrates several distributed computing problems, namely triggering events, agreement and even stabilizing agreement, in a single problem instance.
A characterization of the representability of neural networks is relevant to comprehend their success in artificial intelligence. This study investigate two topics on ReLU neural network expressivity and their connection with a conjecture related to the minimum depth required for representing any continuous piecewise linear function (CPWL). The topics are the minimal depth representation of the sum and max operations, as well as the exploration of polytope neural networks. For the sum operation, we establish a sufficient condition on the minimal depth of the operands to find the minimal depth of the operation. In contrast, regarding the max operation, a comprehensive set of examples is presented, demonstrating that no sufficient conditions, depending solely on the depth of the operands, would imply a minimal depth for the operation. The study also examine the minimal depth relationship between convex CPWL functions. On polytope neural networks, we investigate several fundamental properties, deriving results equivalent to those of ReLU networks, such as depth inclusions and depth computation from vertices. Notably, we compute the minimal depth of simplices, which is strictly related to the minimal depth conjecture in ReLU networks.
Human values play a vital role as an analytical tool in social sciences, enabling the study of diverse dimensions within society as a whole and among individual communities. This paper addresses the limitations of traditional survey-based studies of human values by proposing a computational application of Schwartz's values framework to Reddit, a platform organized into distinct online communities. After ensuring the reliability of automated value extraction tools for Reddit content, we automatically annotate six million posts across 10,000 subreddits with Schwartz values. Our analysis unveils both previously recorded and novel insights into the values prevalent within various online communities. For instance, when examining subreddits with differing opinions on controversial topics, we discover higher universalism values in the Vegan subreddit compared to Carnivores. Additionally, our study of geographically specific subreddits highlights the correlation between traditional values and conservative U.S. states.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.
Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
As a new classification platform, deep learning has recently received increasing attention from researchers and has been successfully applied to many domains. In some domains, like bioinformatics and robotics, it is very difficult to construct a large-scale well-annotated dataset due to the expense of data acquisition and costly annotation, which limits its development. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed (i.i.d.) with the test data, which motivates us to use transfer learning to solve the problem of insufficient training data. This survey focuses on reviewing the current researches of transfer learning by using deep neural network and its applications. We defined deep transfer learning, category and review the recent research works based on the techniques used in deep transfer learning.