亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advancements in audio-visual generative modeling have been propelled by progress in deep learning and the availability of data-rich benchmarks. However, the growth is not attributed solely to models and benchmarks. Universally accepted evaluation metrics also play an important role in advancing the field. While there are many metrics available to evaluate audio and visual content separately, there is a lack of metrics that offer a quantitative and interpretable measure of audio-visual synchronization for videos "in the wild". To address this gap, we first created a large scale human annotated dataset (100+ hrs) representing nine types of synchronization errors in audio-visual content and how human perceive them. We then developed a PEAVS (Perceptual Evaluation of Audio-Visual Synchrony) score, a novel automatic metric with a 5-point scale that evaluates the quality of audio-visual synchronization. We validate PEAVS using a newly generated dataset, achieving a Pearson correlation of 0.79 at the set level and 0.54 at the clip level when compared to human labels. In our experiments, we observe a relative gain 50% over a natural extension of Fr\'echet based metrics for Audio-Visual synchrony, confirming PEAVS efficacy in objectively modeling subjective perceptions of audio-visual synchronization for videos "in the wild".

相關內容

With the advent of supercomputers, multi-processor environments and parallel-in-time (PinT) algorithms offer ways to solve initial value problems for ordinary and partial differential equations (ODEs and PDEs) over long time intervals, a task often unfeasible with sequential solvers within realistic time frames. A recent approach, GParareal, combines Gaussian Processes with traditional PinT methodology (Parareal) to achieve faster parallel speed-ups. The method is known to outperform Parareal for low-dimensional ODEs and a limited number of computer cores. Here, we present Nearest Neighbors GParareal (nnGParareal), a novel data-enriched PinT integration algorithm. nnGParareal builds upon GParareal by improving its scalability properties for higher-dimensional systems and increased processor count. Through data reduction, the model complexity is reduced from cubic to log-linear in the sample size, yielding a fast and automated procedure to integrate initial value problems over long time intervals. First, we provide both an upper bound for the error and theoretical details on the speed-up benefits. Then, we empirically illustrate the superior performance of nnGParareal, compared to GParareal and Parareal, on nine different systems with unique features (e.g., stiff, chaotic, high-dimensional, or challenging-to-learn systems).

Current advancements in technology have focused the attention of the quantum computing community toward exploring the potential of near-term devices whose computing power surpasses that of classical computers in practical applications. An unresolved central question revolves around whether the inherent noise in these devices can be overcome or whether any potential quantum advantage would be limited. There is no doubt that crosstalk is one of the main sources of noise in noisy intermediate-scale quantum (NISQ) systems, and it poses a fundamental challenge to hardware designs. Crosstalk between parallel instructions can corrupt quantum states and cause incorrect program execution. In this study, we present a necessary analysis of the crosstalk error effect on NISQ devices. Our approach is extremely straightforward and practical to estimate the crosstalk error of various multi-qubit devices. In particular, we combine the randomized benchmarking (RB) and simultaneous randomized benchmarking (SRB) protocol to estimate the crosstalk error from the correlation controlled-NOT (CNOT) gate. We demonstrate this protocol experimentally on 5-, 7-, \& 16-qubit devices. Our results demonstrate the crosstalk error model of three different IBM quantum devices over the experimental week and compare the error variation against the machine, number of qubits, quantum volume, processor, and topology. We then confirm the improvement in the circuit fidelity on different benchmarks by up to 3.06x via inserting an instruction barrier, as compared with an IBM quantum noisy device which offers near-optimal crosstalk mitigation in practice. Finally, we discuss the current system limitation, its tradeoff on fidelity and depth, noise beyond the NISQ system, and mitigation opportunities to ensure that the quantum operation can perform its quantum magic undisturbed.

Before deploying outputs from foundation models in high-stakes tasks, it is imperative to ensure that they align with human values. For instance, in radiology report generation, reports generated by a vision-language model must align with human evaluations before their use in medical decision-making. This paper presents Conformal Alignment, a general framework for identifying units whose outputs meet a user-specified alignment criterion. It is guaranteed that on average, a prescribed fraction of selected units indeed meet the alignment criterion, regardless of the foundation model or the data distribution. Given any pre-trained model and new units with model-generated outputs, Conformal Alignment leverages a set of reference data with ground-truth alignment status to train an alignment predictor. It then selects new units whose predicted alignment scores surpass a data-dependent threshold, certifying their corresponding outputs as trustworthy. Through applications to question answering and radiology report generation, we demonstrate that our method is able to accurately identify units with trustworthy outputs via lightweight training over a moderate amount of reference data. En route, we investigate the informativeness of various features in alignment prediction and combine them with standard models to construct the alignment predictor.

Value function factorization methods are commonly used in cooperative multi-agent reinforcement learning, with QMIX receiving significant attention. Many QMIX-based methods introduce monotonicity constraints between the joint action value and individual action values to achieve decentralized execution. However, such constraints limit the representation capacity of value factorization, restricting the joint action values it can represent and hindering the learning of the optimal policy. To address this challenge, we propose the Potentially Optimal joint actions Weighted QMIX (POWQMIX) algorithm, which recognizes the potentially optimal joint actions and assigns higher weights to the corresponding losses of these joint actions during training. We theoretically prove that with such a weighted training approach the optimal policy is guaranteed to be recovered. Experiments in matrix games, predator-prey, and StarCraft II Multi-Agent Challenge environments demonstrate that our algorithm outperforms the state-of-the-art value-based multi-agent reinforcement learning methods.

The sparse identification of nonlinear dynamical systems (SINDy) is a data-driven technique employed for uncovering and representing the fundamental dynamics of intricate systems based on observational data. However, a primary obstacle in the discovery of models for nonlinear partial differential equations (PDEs) lies in addressing the challenges posed by the curse of dimensionality and large datasets. Consequently, the strategic selection of the most informative samples within a given dataset plays a crucial role in reducing computational costs and enhancing the effectiveness of SINDy-based algorithms. To this aim, we employ a greedy sampling approach to the snapshot matrix of a PDE to obtain its valuable samples, which are suitable to train a deep neural network (DNN) in a SINDy framework. SINDy based algorithms often consist of a data collection unit, constructing a dictionary of basis functions, computing the time derivative, and solving a sparse identification problem which ends to regularised least squares minimization. In this paper, we extend the results of a SINDy based deep learning model discovery (DeePyMoD) approach by integrating greedy sampling technique in its data collection unit and new sparsity promoting algorithms in the least squares minimization unit. In this regard we introduce the greedy sampling neural network in sparse identification of nonlinear partial differential equations (GN-SINDy) which blends a greedy sampling method, the DNN, and the SINDy algorithm. In the implementation phase, to show the effectiveness of GN-SINDy, we compare its results with DeePyMoD by using a Python package that is prepared for this purpose on numerous PDE discovery

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司