We address the task of weakly-supervised few-shot image classification and segmentation, by leveraging a Vision Transformer (ViT) pretrained with self-supervision. Our proposed method takes token representations from the self-supervised ViT and leverages their correlations, via self-attention, to produce classification and segmentation predictions through separate task heads. Our model is able to effectively learn to perform classification and segmentation in the absence of pixel-level labels during training, using only image-level labels. To do this it uses attention maps, created from tokens generated by the self-supervised ViT backbone, as pixel-level pseudo-labels. We also explore a practical setup with ``mixed" supervision, where a small number of training images contains ground-truth pixel-level labels and the remaining images have only image-level labels. For this mixed setup, we propose to improve the pseudo-labels using a pseudo-label enhancer that was trained using the available ground-truth pixel-level labels. Experiments on Pascal-5i and COCO-20i demonstrate significant performance gains in a variety of supervision settings, and in particular when little-to-no pixel-level labels are available.
A covariance matrix estimator using two bits per entry was recently developed by Dirksen, Maly and Rauhut [Annals of Statistics, 50(6), pp. 3538-3562]. The estimator achieves near minimax rate for general sub-Gaussian distributions, but also suffers from two downsides: theoretically, there is an essential gap on operator norm error between their estimator and sample covariance when the diagonal of the covariance matrix is dominated by only a few entries; practically, its performance heavily relies on the dithering scale, which needs to be tuned according to some unknown parameters. In this work, we propose a new 2-bit covariance matrix estimator that simultaneously addresses both issues. Unlike the sign quantizer associated with uniform dither in Dirksen et al., we adopt a triangular dither prior to a 2-bit quantizer inspired by the multi-bit uniform quantizer. By employing dithering scales varying across entries, our estimator enjoys an improved operator norm error rate that depends on the effective rank of the underlying covariance matrix rather than the ambient dimension, thus closing the theoretical gap. Moreover, our proposed method eliminates the need of any tuning parameter, as the dithering scales are entirely determined by the data. Experimental results under Gaussian samples are provided to showcase the impressive numerical performance of our estimator. Remarkably, by halving the dithering scales, our estimator oftentimes achieves operator norm errors less than twice of the errors of sample covariance.
We present Provengo, a comprehensive suite of tools designed to facilitate the implementation of Scenario-Driven Model-Based Testing (SDMBT), an innovative approach that utilizes scenarios to construct a model encompassing the user's perspective and the system's business value while also defining the desired outcomes. With the assistance of Provengo, testers gain the ability to effortlessly create natural user stories and seamlessly integrate them into a model capable of generating effective tests. The demonstration illustrates how SDMBT effectively addresses the bootstrapping challenge commonly encountered in model-based testing (MBT) by enabling incremental development, starting from simple models and gradually augmenting them with additional stories.
Unstructured meshes are characterized by data points irregularly distributed in the Euclidian space. Due to the irregular nature of these data, computing connectivity information between the mesh elements requires much more time and memory than on uniformly distributed data. To lower storage costs, dynamic data structures have been proposed. These data structures compute connectivity information on the fly and discard them when no longer needed. However, on-the-fly computation slows down algorithms and results in a negative impact on the time performance. To address this issue, we propose a new task-parallel approach to proactively compute mesh connectivity. Unlike previous approaches implementing data-parallel models, where all threads run the same type of instructions, our task-parallel approach allows threads to run different functions. Specifically, some threads run the algorithm of choice while other threads compute connectivity information before they are actually needed. The approach was implemented in the new Accelerated Clustered TOPOlogical (ACTOPO) data structure, which can support any processing algorithm requiring mesh connectivity information. Our experiments show that ACTOPO combines the benefits of state-of-the-art memory-efficient (TTK CompactTriangulation) and time-efficient (TTK ExplicitTriangulation) topological data structures. It occupies a similar amount of memory as TTK CompactTriangulation while providing up to 5x speedup. Moreover, it achieves comparable time performance as TTK ExplicitTriangulation while using only half of the memory space.
Recent years have witnessed the remarkable performance of diffusion models in various vision tasks. However, for image restoration that aims to recover clear images with sharper details from given degraded observations, diffusion-based methods may fail to recover promising results due to inaccurate noise estimation. Moreover, simple constraining noises cannot effectively learn complex degradation information, which subsequently hinders the model capacity. To solve the above problems, we propose a coarse-to-fine diffusion Transformer (C2F-DFT) for image restoration. Specifically, our C2F-DFT contains diffusion self-attention (DFSA) and diffusion feed-forward network (DFN) within a new coarse-to-fine training scheme. The DFSA and DFN respectively capture the long-range diffusion dependencies and learn hierarchy diffusion representation to facilitate better restoration. In the coarse training stage, our C2F-DFT estimates noises and then generates the final clean image by a sampling algorithm. To further improve the restoration quality, we propose a simple yet effective fine training scheme. It first exploits the coarse-trained diffusion model with fixed steps to generate restoration results, which then would be constrained with corresponding ground-truth ones to optimize the models to remedy the unsatisfactory results affected by inaccurate noise estimation. Extensive experiments show that C2F-DFT significantly outperforms diffusion-based restoration method IR-SDE and achieves competitive performance compared with Transformer-based state-of-the-art methods on $3$ tasks, including deraining, deblurring, and real denoising. The code is available at //github.com/wlydlut/C2F-DFT.
This thesis enhances the autonomy of the M4 (Multi-Modal Mobility Morphobot) robot, designed for Mars and rescue missions. The research enables the robot to autonomously select its locomotion mode and path in complex terrains. Focusing on walking and flying modes, a Gazebo simulation, and custom perception-navigations pipelines are developed. Leveraging deep learning, the robot determines optimal mode transitions based on a 2.5D map. Additionally, an energy efficient path planner based on 2.5D mapping is implemented and validated in simulations. The contributions demonstrate scalability for future mode integrations. The M4 robot showcases intelligent mode switching, efficient navigation, and reduced energy consumption, bringing us closer to fully autonomous multi-modal robots for exploration and rescue missions. This work paves the way for future advancements in autonomous robotics, with the ultimate vision of deploying the M4 robot for exploration and rescue tasks, making a significant impact in the quest for intelligent and versatile robotic systems.
It is now possible to reconstruct dynamic human motion and shape from a sparse set of cameras using Neural Radiance Fields (NeRF) driven by an underlying skeleton. However, a challenge remains to model the deformation of cloth and skin in relation to skeleton pose. Unlike existing avatar models that are learned implicitly or rely on a proxy surface, our approach is motivated by the observation that different poses necessitate unique frequency assignments. Neglecting this distinction yields noisy artifacts in smooth areas or blurs fine-grained texture and shape details in sharp regions. We develop a two-branch neural network that is adaptive and explicit in the frequency domain. The first branch is a graph neural network that models correlations among body parts locally, taking skeleton pose as input. The second branch combines these correlation features to a set of global frequencies and then modulates the feature encoding. Our experiments demonstrate that our network outperforms state-of-the-art methods in terms of preserving details and generalization capabilities.
Despite the recent success of Graph Neural Networks (GNNs), it remains challenging to train GNNs on large-scale graphs due to neighbor explosions. As a remedy, distributed computing becomes a promising solution by leveraging abundant computing resources (e.g., GPU). However, the node dependency of graph data increases the difficulty of achieving high concurrency in distributed GNN training, which suffers from the massive communication overhead. To address it, Historical value approximation is deemed a promising class of distributed training techniques. It utilizes an offline memory to cache historical information (e.g., node embedding) as an affordable approximation of the exact value and achieves high concurrency. However, such benefits come at the cost of involving dated training information, leading to staleness, imprecision, and convergence issues. To overcome these challenges, this paper proposes SAT (Staleness-Alleviated Training), a novel and scalable distributed GNN training framework that reduces the embedding staleness adaptively. The key idea of SAT is to model the GNN's embedding evolution as a temporal graph and build a model upon it to predict future embedding, which effectively alleviates the staleness of the cached historical embedding. We propose an online algorithm to train the embedding predictor and the distributed GNN alternatively and further provide a convergence analysis. Empirically, we demonstrate that SAT can effectively reduce embedding staleness and thus achieve better performance and convergence speed on multiple large-scale graph datasets.
The task of semantic segmentation requires a model to assign semantic labels to each pixel of an image. However, the performance of such models degrades when deployed in an unseen domain with different data distributions compared to the training domain. We present a new augmentation-driven approach to domain generalization for semantic segmentation using a re-parameterized vision transformer (ReVT) with weight averaging of multiple models after training. We evaluate our approach on several benchmark datasets and achieve state-of-the-art mIoU performance of 47.3% (prior art: 46.3%) for small models and of 50.1% (prior art: 47.8%) for midsized models on commonly used benchmark datasets. At the same time, our method requires fewer parameters and reaches a higher frame rate than the best prior art. It is also easy to implement and, unlike network ensembles, does not add any computational complexity during inference.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.