亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sampling from the $q$-state ferromagnetic Potts model is a fundamental question in statistical physics, probability theory, and theoretical computer science. On general graphs, this problem is computationally hard, and this hardness holds at arbitrarily low temperatures. At the same time, in recent years, there has been significant progress showing the existence of low-temperature sampling algorithms in various specific families of graphs. Our aim in this paper is to understand the minimal structural properties of general graphs that enable polynomial-time sampling from the $q$-state ferromagnetic Potts model at low temperatures. We study this problem from the perspective of the widely-used Swendsen--Wang dynamics and the closely related random-cluster dynamics. Our results demonstrate that the key graph property behind fast or slow convergence time for these dynamics is whether the independent edge-percolation on the graph admits a strongly supercritical phase. By this, we mean that at large $p<1$, it has a unique giant component of linear size, and the complement of that giant component is comprised of only small components. Specifically, we prove that such a condition implies fast mixing of the Swendsen--Wang and random-cluster dynamics on two general families of bounded-degree graphs: (a) graphs of at most stretched-exponential volume growth and (b) locally treelike graphs. In the other direction, we show that, even among graphs in those families, these Markov chains can converge exponentially slowly at arbitrarily low temperatures if the edge-percolation condition does not hold. In the process, we develop new tools for the analysis of non-local Markov chains, including a framework to bound the speed of disagreement propagation in the presence of long-range correlations, and an understanding of spatial mixing properties on trees with random boundary conditions.

相關內容

Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) control are foundational and extensively researched problems in optimal control. We investigate LQR and LQG problems with semi-adversarial perturbations and time-varying adversarial bandit loss functions. The best-known sublinear regret algorithm of~\cite{gradu2020non} has a $T^{\frac{3}{4}}$ time horizon dependence, and its authors posed an open question about whether a tight rate of $\sqrt{T}$ could be achieved. We answer in the affirmative, giving an algorithm for bandit LQR and LQG which attains optimal regret (up to logarithmic factors) for both known and unknown systems. A central component of our method is a new scheme for bandit convex optimization with memory, which is of independent interest.

Optimal control (OC) is an effective approach to controlling complex dynamical systems. However, traditional approaches to parameterising and learning controllers in optimal control have been ad-hoc, collecting data and fitting it to neural networks. However, this can lead to learnt controllers ignoring constraints like optimality and time variability. We introduce a unified framework that simultaneously solves control problems while learning corresponding Lyapunov or value functions. Our method formulates OC-like mathematical programs based on the Hamilton-Jacobi-Bellman (HJB) equation. We leverage the HJB optimality constraint and its relaxation to learn time-varying value and Lyapunov functions, implicitly ensuring the inclusion of constraints. We show the effectiveness of our approach on linear and nonlinear control-affine problems. Additionally, we demonstrate significant reductions in planning horizons (up to a factor of 25) when incorporating the learnt functions into Model Predictive Controllers.

We define an optimal preconditioning for the Langevin diffusion by analytically maximizing the expected squared jumped distance. This yields as the optimal preconditioning an inverse Fisher information covariance matrix, where the covariance matrix is computed as the outer product of log target gradients averaged under the target. We apply this result to the Metropolis adjusted Langevin algorithm (MALA) and derive a computationally efficient adaptive MCMC scheme that learns the preconditioning from the history of gradients produced as the algorithm runs. We show in several experiments that the proposed algorithm is very robust in high dimensions and significantly outperforms other methods, including a closely related adaptive MALA scheme that learns the preconditioning with standard adaptive MCMC as well as the position-dependent Riemannian manifold MALA sampler.

We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and R\'enyi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.

We consider the performance of Glauber dynamics for the random cluster model with real parameter $q>1$ and temperature $\beta>0$. Recent work by Helmuth, Jenssen and Perkins detailed the ordered/disordered transition of the model on random $\Delta$-regular graphs for all sufficiently large $q$ and obtained an efficient sampling algorithm for all temperatures $\beta$ using cluster expansion methods. Despite this major progress, the performance of natural Markov chains, including Glauber dynamics, is not yet well understood on the random regular graph, partly because of the non-local nature of the model (especially at low temperatures) and partly because of severe bottleneck phenomena that emerge in a window around the ordered/disordered transition. Nevertheless, it is widely conjectured that the bottleneck phenomena that impede mixing from worst-case starting configurations can be avoided by initialising the chain more judiciously. Our main result establishes this conjecture for all sufficiently large $q$ (with respect to $\Delta$). Specifically, we consider the mixing time of Glauber dynamics initialised from the two extreme configurations, the all-in and all-out, and obtain a pair of fast mixing bounds which cover all temperatures $\beta$, including in particular the bottleneck window. Our result is inspired by the recent approach of Gheissari and Sinclair for the Ising model who obtained a similar-flavoured mixing-time bound on the random regular graph for sufficiently low temperatures. To cover all temperatures in the RC model, we refine appropriately the structural results of Helmuth, Jenssen and Perkins about the ordered/disordered transition and show spatial mixing properties ''within the phase'', which are then related to the evolution of the chain.

We propose a new paradigm for designing efficient p-adaptive arbitrary high order methods. We consider arbitrary high order iterative schemes that gain one order of accuracy at each iteration and we modify them in order to match the accuracy achieved in a specific iteration with the discretization accuracy of the same iteration. Apart from the computational advantage, the new modified methods allow to naturally perform p-adaptivity, stopping the iterations when appropriate conditions are met. Moreover, the modification is very easy to be included in an existing implementation of an arbitrary high order iterative scheme and it does not ruin the possibility of parallelization, if this was achievable by the original method. An application to the Arbitrary DERivative (ADER) method for hyperbolic Partial Differential Equations (PDEs) is presented here. We explain how such framework can be interpreted as an arbitrary high order iterative scheme, by recasting it as a Deferred Correction (DeC) method, and how to easily modify it to obtain a more efficient formulation, in which a local a posteriori limiter can be naturally integrated leading to p-adaptivity and structure preserving properties. Finally, the novel approach is extensively tested against classical benchmarks for compressible gas dynamics to show the robustness and the computational efficiency.

This paper aims at obtaining, by means of integral transforms, analytical approximations in short times of solutions to boundary value problems for the one-dimensional reaction-diffusion equation with constant coefficients. The general form of the equation is considered on a bounded generic interval and the three classical types of boundary conditions, i.e., Dirichlet as well as Neumann and mixed boundary conditions are considered in a unified way. The Fourier and Laplace integral transforms are successively applied and an exact solution is obtained in the Laplace domain. This operational solution is proven to be the accurate Laplace transform of the infinite series obtained by the Fourier decomposition method and presented in the literature as solutions to this type of problem. On the basis of this unified operational solution, four cases are distinguished where innovative formulas expressing consistent analytical approximations in short time limits are derived with respect to the behavior of the solution at the boundaries. Compared to the infinite series solutions, the analytical approximations may open new perspectives and applications, among which can be noted the improvement of numerical efficiency in simulations of one-dimensional moving boundary problems, such as in Stefan models.

Uncertainty estimation is critical for numerous applications of deep neural networks and draws growing attention from researchers. Here, we demonstrate an uncertainty quantification approach for deep neural networks used in inverse problems based on cycle consistency. We build forward-backward cycles using the physical forward model available and a trained deep neural network solving the inverse problem at hand, and accordingly derive uncertainty estimators through regression analysis on the consistency of these forward-backward cycles. We theoretically analyze cycle consistency metrics and derive their relationship with respect to uncertainty, bias, and robustness of the neural network inference. To demonstrate the effectiveness of these cycle consistency-based uncertainty estimators, we classified corrupted and out-of-distribution input image data using some of the widely used image deblurring and super-resolution neural networks as testbeds. The blind testing of our method outperformed other models in identifying unseen input data corruption and distribution shifts. This work provides a simple-to-implement and rapid uncertainty quantification method that can be universally applied to various neural networks used for solving inverse problems.

In modern distributed computing applications, such as federated learning and AIoT systems, protecting privacy is crucial to prevent misbehaving parties from colluding to steal others' private information. However, guaranteeing the utility of computation outcomes while protecting all parties' privacy can be challenging, particularly when the parties' privacy requirements are highly heterogeneous. In this paper, we propose a novel privacy framework for multi-party computation called Threshold Personalized Multi-party Differential Privacy (TPMDP), which addresses a limited number of semi-honest colluding adversaries. Our framework enables each party to have a personalized privacy budget. We design a multi-party Gaussian mechanism that is easy to implement and satisfies TPMDP, wherein each party perturbs the computation outcome in a secure multi-party computation protocol using Gaussian noise. To optimize the utility of the mechanism, we cast the utility loss minimization problem into a linear programming (LP) problem. We exploit the specific structure of this LP problem to compute the optimal solution after O(n) computations, where n is the number of parties, while a generic solver may require exponentially many computations. Extensive experiments demonstrate the benefits of our approach in terms of low utility loss and high efficiency compared to existing private mechanisms that do not consider personalized privacy requirements or collusion thresholds.

Hamiltonian simulation is one of the most important problems in the field of quantum computing. There have been extended efforts on designing algorithms for faster simulation, and the evolution time $T$ for the simulation turns out to largely affect algorithm runtime. While there are some specific types of Hamiltonians that can be fast-forwarded, i.e., simulated within time $o(T)$, for large enough classes of Hamiltonians (e.g., all local/sparse Hamiltonians), existing simulation algorithms require running time at least linear in the evolution time $T$. On the other hand, while there exist lower bounds of $\Omega(T)$ circuit size for some large classes of Hamiltonian, these lower bounds do not rule out the possibilities of Hamiltonian simulation with large but "low-depth" circuits by running things in parallel. Therefore, it is intriguing whether we can achieve fast Hamiltonian simulation with the power of parallelism. In this work, we give a negative result for the above open problem, showing that sparse Hamiltonians and (geometrically) local Hamiltonians cannot be parallelly fast-forwarded. In the oracle model, we prove that there are time-independent sparse Hamiltonians that cannot be simulated via an oracle circuit of depth $o(T)$. In the plain model, relying on the random oracle heuristic, we show that there exist time-independent local Hamiltonians and time-dependent geometrically local Hamiltonians that cannot be simulated via an oracle circuit of depth $o(T/n^c)$, where the Hamiltonians act on $n$-qubits, and $c$ is a constant.

北京阿比特科技有限公司