Fermat-Euler quotients arose from the study of the first case of Fermat's Last Theorem, and have numerous applications in number theory. Recently they were studied from the cryptographic aspects by constructing many pseudorandom binary sequences, whose linear complexities and trace representations were calculated. In this work, we further study their correlation measures by using the approach based on Dirichlet characters, Ramanujan sums and Gauss sums. Our results show that the $4$-order correlation measures of these sequences are very large. Therefore they may not be suggested for cryptography.
Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying out modifications to a graph representing spatial correlations; specifically, they delete edges of the planar graph derived from border-sharing between geographic regions in order to maximise a specific objective function. In this paper we address the computational complexity of the associated graph optimisation problem. We demonstrate that this problem cannot be solved in polynomial time unless P = NP; we further show intractability for two simpler variants of the problem. We follow these results with two parameterised algorithms that exactly solve the problem in polynomial time in restricted settings. The first of these utilises dynamic programming on a tree decomposition, and runs in polynomial time if both the treewidth and maximum degree are bounded. The second algorithm is restricted to problem instances with maximum degree three, as may arise from triangulations of planar surfaces, but is an FPT algorithm when the maximum number of edges that can be removed is taken as the parameter.
This paper investigates limiting spectral distribution of a high-dimensional Kendall's rank correlation matrix. The underlying population is allowed to have general dependence structure. The result no longer follows the generalized Mar\u{c}enko-Pastur law which is a brand new limiting spectral distribution for sample covariance/correlation matrices. It's the first result on rank correlation matrices with dependence. As applications, we study the Kendall's rank correlation matrix for multivariate normal distributions with a general covariance matrix. From these results, we further gain insights of Kendall's rank correlation matrix and its connections with the sample covariance/correlation matrix.
Considering a probability distribution over parameters is known as an efficient strategy to learn a neural network with non-differentiable activation functions. We study the expectation of a probabilistic neural network as a predictor by itself, focusing on the aggregation of binary activated neural networks with normal distributions over real-valued weights. Our work leverages a recent analysis derived from the PAC-Bayesian framework that derives tight generalization bounds and learning procedures for the expected output value of such an aggregation, which is given by an analytical expression. While the combinatorial nature of the latter has been circumvented by approximations in previous works, we show that the exact computation remains tractable for deep but narrow neural networks, thanks to a dynamic programming approach. This leads us to a peculiar bound minimization learning algorithm for binary activated neural networks, where the forward pass propagates probabilities over representations instead of activation values. A stochastic counterpart of this new neural networks training scheme that scales to wider architectures is proposed.
The partition function and free energy of a quantum many-body system determine its physical properties in thermal equilibrium. Here we study the computational complexity of approximating these quantities for $n$-qubit local Hamiltonians. First, we report a classical algorithm with $\mathrm{poly}(n)$ runtime which approximates the free energy of a given $2$-local Hamiltonian provided that it satisfies a certain denseness condition. Our algorithm combines the variational characterization of the free energy and convex relaxation methods. It contributes to a body of work on efficient approximation algorithms for dense instances of optimization problems which are hard in the general case, and can be viewed as simultaneously extending existing algorithms for (a) the ground energy of dense $2$-local Hamiltonians, and (b) the free energy of dense classical Ising models. Secondly, we establish polynomial-time equivalence between the problem of approximating the free energy of local Hamiltonians and three other natural quantum approximate counting problems, including the problem of approximating the number of witness states accepted by a QMA verifier. These results suggest that simulation of quantum many-body systems in thermal equilibrium may precisely capture the complexity of a broad family of computational problems that has yet to be defined or characterized in terms of known complexity classes. Finally, we summarize state-of-the-art classical and quantum algorithms for approximating the free energy and show how to improve their runtime and memory footprint.
Low-rank matrix models have been universally useful for numerous applications starting from classical system identification to more modern matrix completion in signal processing and statistics. The nuclear norm has been employed as a convex surrogate of the low-rankness since it induces a low-rank solution to inverse problems. While the nuclear norm for low-rankness has a nice analogy with the $\ell_1$ norm for sparsity through the singular value decomposition, other matrix norms also induce low-rankness. Particularly as one interprets a matrix as a linear operator between Banach spaces, various tensor product norms generalize the role of the nuclear norm. We provide a tensor-norm-constrained estimator for recovery of approximately low-rank matrices from local measurements corrupted with noise. A tensor-norm regulizer is designed adapting to the local structure. We derive statistical analysis of the estimator over matrix completion and decentralized sketching through applying Maurey's empirical method to tensor products of Banach spaces. The estimator provides a near optimal error bound in a minimax sense and admits a polynomial-time algorithm for these applications.
Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel methodology for count time series by warping a Gaussian DLM. The warping function has two components: a transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. Importantly, we develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient computing strategies for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
Entity alignment aims to identify equivalent entity pairs from different Knowledge Graphs (KGs), which is essential in integrating multi-source KGs. Recently, with the introduction of GNNs into entity alignment, the architectures of recent models have become more and more complicated. We even find two counter-intuitive phenomena within these methods: (1) The standard linear transformation in GNNs is not working well. (2) Many advanced KG embedding models designed for link prediction task perform poorly in entity alignment. In this paper, we abstract existing entity alignment methods into a unified framework, Shape-Builder & Alignment, which not only successfully explains the above phenomena but also derives two key criteria for an ideal transformation operation. Furthermore, we propose a novel GNNs-based method, Relational Reflection Entity Alignment (RREA). RREA leverages Relational Reflection Transformation to obtain relation specific embeddings for each entity in a more efficient way. The experimental results on real-world datasets show that our model significantly outperforms the state-of-the-art methods, exceeding by 5.8%-10.9% on Hits@1.
Graph Neural Networks (GNN) come in many flavors, but should always be either invariant (permutation of the nodes of the input graph does not affect the output) or equivariant (permutation of the input permutes the output). In this paper, we consider a specific class of invariant and equivariant networks, for which we prove new universality theorems. More precisely, we consider networks with a single hidden layer, obtained by summing channels formed by applying an equivariant linear operator, a pointwise non-linearity and either an invariant or equivariant linear operator. Recently, Maron et al. (2019) showed that by allowing higher-order tensorization inside the network, universal invariant GNNs can be obtained. As a first contribution, we propose an alternative proof of this result, which relies on the Stone-Weierstrass theorem for algebra of real-valued functions. Our main contribution is then an extension of this result to the equivariant case, which appears in many practical applications but has been less studied from a theoretical point of view. The proof relies on a new generalized Stone-Weierstrass theorem for algebra of equivariant functions, which is of independent interest. Finally, unlike many previous settings that consider a fixed number of nodes, our results show that a GNN defined by a single set of parameters can approximate uniformly well a function defined on graphs of varying size.
The Everyday Sexism Project documents everyday examples of sexism reported by volunteer contributors from all around the world. It collected 100,000 entries in 13+ languages within the first 3 years of its existence. The content of reports in various languages submitted to Everyday Sexism is a valuable source of crowdsourced information with great potential for feminist and gender studies. In this paper, we take a computational approach to analyze the content of reports. We use topic-modelling techniques to extract emerging topics and concepts from the reports, and to map the semantic relations between those topics. The resulting picture closely resembles and adds to that arrived at through qualitative analysis, showing that this form of topic modeling could be useful for sifting through datasets that had not previously been subject to any analysis. More precisely, we come up with a map of topics for two different resolutions of our topic model and discuss the connection between the identified topics. In the low resolution picture, for instance, we found Public space/Street, Online, Work related/Office, Transport, School, Media harassment, and Domestic abuse. Among these, the strongest connection is between Public space/Street harassment and Domestic abuse and sexism in personal relationships.The strength of the relationships between topics illustrates the fluid and ubiquitous nature of sexism, with no single experience being unrelated to another.