The presence of outliers can significantly degrade the performance of ellipse fitting methods. We develop an ellipse fitting method that is robust to outliers based on the maximum correntropy criterion with variable center (MCC-VC), where a Laplacian kernel is used. For single ellipse fitting, we formulate a non-convex optimization problem to estimate the kernel bandwidth and center and divide it into two subproblems, each estimating one parameter. We design sufficiently accurate convex approximation to each subproblem such that computationally efficient closed-form solutions are obtained. The two subproblems are solved in an alternate manner until convergence is reached. We also investigate coupled ellipses fitting. While there exist multiple ellipses fitting methods that can be used for coupled ellipses fitting, we develop a couple ellipses fitting method by exploiting the special structure. Having unknown association between data points and ellipses, we introduce an association vector for each data point and formulate a non-convex mixed-integer optimization problem to estimate the data associations, which is approximately solved by relaxing it into a second-order cone program. Using the estimated data associations, we extend the proposed method to achieve the final coupled ellipses fitting. The proposed method is shown to have significantly better performance over the existing methods in both simulated data and real images.
The goal of the group testing problem is to identify a set of defective items within a larger set of items, using suitably-designed tests whose outcomes indicate whether any defective item is present. In this paper, we study how the number of tests can be significantly decreased by leveraging the structural dependencies between the items, i.e., by incorporating prior information. To do so, we pursue two different perspectives: (i) As a generalization of the uniform combinatorial prior, we consider the case that the defective set is uniform over a \emph{subset} of all possible sets of a given size, and study how this impacts the information-theoretic limits on the number of tests for approximate recovery; (ii) As a generalization of the i.i.d.~prior, we introduce a new class of priors based on the Ising model, where the associated graph represents interactions between items. We show that this naturally leads to an Integer Quadratic Program decoder, which can be converted to an Integer Linear Program and/or relaxed to a non-integer variant for improved computational complexity, while maintaining strong empirical recovery performance.
A recently developed measure-theoretic framework solves a stochastic inverse problem (SIP) for models where uncertainties in model output data are predominantly due to aleatoric (i.e., irreducible) uncertainties in model inputs (i.e., parameters). The subsequent inferential target is a distribution on parameters. Another type of inverse problem is to quantify uncertainties in estimates of "true" parameter values under the assumption that such uncertainties should be reduced as more data are incorporated into the problem, i.e., the uncertainty is considered epistemic. A major contribution of this work is the formulation and solution of such a parameter identification problem (PIP) within the measure-theoretic framework developed for the SIP. The approach is novel in that it utilizes a solution to a stochastic forward problem (SFP) to update an initial density only in the parameter directions informed by the model output data. In other words, this method performs "selective regularization" only in the parameter directions not informed by data. The solution is defined by a maximal updated density (MUD) point where the updated density defines the measure-theoretic solution to the PIP. Another significant contribution of this work is the full theory of existence and uniqueness of MUD points for linear maps with Gaussian distributions. Data-constructed Quantity of Interest (QoI) maps are also presented and analyzed for solving the PIP within this measure-theoretic framework as a means of reducing uncertainties in the MUD estimate. We conclude with a demonstration of the general applicability of the method on two problems involving either spatial or temporal data for estimating uncertain model parameters.
Information-theoretic Bayesian optimization techniques have become popular for optimizing expensive-to-evaluate black-box functions due to their non-myopic qualities. Entropy Search and Predictive Entropy Search both consider the entropy over the optimum in the input space, while the recent Max-value Entropy Search considers the entropy over the optimal value in the output space. We propose Joint Entropy Search (JES), a novel information-theoretic acquisition function that considers an entirely new quantity, namely the entropy over the joint optimal probability density over both input and output space. To incorporate this information, we consider the reduction in entropy from conditioning on fantasized optimal input/output pairs. The resulting approach primarily relies on standard GP machinery and removes complex approximations typically associated with information-theoretic methods. With minimal computational overhead, JES shows superior decision-making, and yields state-of-the-art performance for information-theoretic approaches across a wide suite of tasks. As a light-weight approach with superior results, JES provides a new go-to acquisition function for Bayesian optimization.
Mathematical models are essential for understanding and making predictions about systems arising in nature and engineering. Yet, mathematical models are a simplification of true phenomena, thus making predictions subject to uncertainty. Hence, the ability to quantify uncertainties is essential to any modelling framework, enabling the user to assess the importance of certain parameters on quantities of interest and have control over the quality of the model output by providing a rigorous understanding of uncertainty. Peridynamic models are a particular class of mathematical models that have proven to be remarkably accurate and robust for a large class of material failure problems. However, the high computational expense of peridynamic models remains a major limitation, hindering outer-loop applications that require a large number of simulations, for example, uncertainty quantification. This contribution provides a framework to make such computations feasible. By employing a Multilevel Monte Carlo (MLMC) framework, where the majority of simulations are performed using a coarse mesh, and performing relatively few simulations using a fine mesh, a significant reduction in computational cost can be realised, and statistics of structural failure can be estimated. The results show a speed-up factor of 16x over a standard Monte Carlo estimator, enabling the forward propagation of uncertain parameters in a computationally expensive peridynamic model. Furthermore, the multilevel method provides an estimate of both the discretisation error and sampling error, thus improving the confidence in numerical predictions. The performance of the approach is demonstrated through an examination of the statistical size effect in quasi-brittle materials.
Behavioural cloning (BC) is a commonly used imitation learning method to infer a sequential decision-making policy from expert demonstrations. However, when the quality of the data is not optimal, the resulting behavioural policy also performs sub-optimally once deployed. Recently, there has been a surge in offline reinforcement learning methods that hold the promise to extract high-quality policies from sub-optimal historical data. A common approach is to perform regularisation during training, encouraging updates during policy evaluation and/or policy improvement to stay close to the underlying data. In this work, we investigate whether an offline approach to improving the quality of the existing data can lead to improved behavioural policies without any changes in the BC algorithm. The proposed data improvement approach - Trajectory Stitching (TS) - generates new trajectories (sequences of states and actions) by `stitching' pairs of states that were disconnected in the original data and generating their connecting new action. By construction, these new transitions are guaranteed to be highly plausible according to probabilistic models of the environment, and to improve a state-value function. We demonstrate that the iterative process of replacing old trajectories with new ones incrementally improves the underlying behavioural policy. Extensive experimental results show that significant performance gains can be achieved using TS over BC policies extracted from the original data. Furthermore, using the D4RL benchmarking suite, we demonstrate that state-of-the-art results are obtained by combining TS with two existing offline learning methodologies reliant on BC, model-based offline planning (MBOP) and policy constraint (TD3+BC).
We study a natural extension of classical empirical risk minimization, where the hypothesis space is a random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned by a random subset of the data, recovering as a special case Nystrom approaches for kernel methods. Considering random subspaces naturally leads to computational savings, but the question is whether the corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the hinge loss used in support vector machines. This unified analysis requires developing new proofs, that use different technical tools, such as sub-gaussian inputs, to achieve fast rates. Our main results show the existence of different settings, depending on how hard the learning problem is, for which computational efficiency can be improved with no loss in performance.
We present a new method of modelling numerical systems where there are two distinct output solution classes, for example tipping points or bifurcations. Gaussian process emulation is a useful tool in understanding these complex systems and provides estimates of uncertainty, but we aim to include systems where there are discontinuities between the two output solutions. Due to continuity assumptions, we consider current methods of classification to split our input space into two output regions. Classification and logistic regression methods currently rely on drawing from an independent Bernoulli distribution, which neglects any information known in the neighbouring area. We build on this by including correlation between our input points. Gaussian processes are still a vital element, but used in latent space to model the two regions. Using the input values and an associated output class label, the latent variable is estimated using MCMC sampling and a unique likelihood. A threshold (usually at zero) defines the boundary. We apply our method to a motivating example provided by the hormones associated with the reproductive system in mammals, where the two solutions are associated with high and low rates of reproduction.
We propose a new wavelet-based method for density estimation when the data are size-biased. More specifically, we consider a power of the density of interest, where this power exceeds 1/2. Warped wavelet bases are employed, where warping is attained by some continuous cumulative distribution function. A special case is the conventional orthonormal wavelet estimation, where the warping distribution is the standard continuous uniform. We show that both linear and nonlinear wavelet estimators are consistent, with optimal and/or near-optimal rates. Monte Carlo simulations are performed to compare four special settings which are easy to interpret in practice. An application with a real dataset on fatal traffic accidents involving alcohol illustrates the method. We observe that warped bases provide more flexible and superior estimates for both simulated and real data. Moreover, we find that estimating the power of a density (for instance, its square root) further improves the results.
A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.