亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Energy forecasting has attracted enormous attention over the last few decades, with novel proposals related to the use of heterogeneous data sources, probabilistic forecasting, online learn-ing, etc. A key aspect that emerged is that learning and forecasting may highly benefit from distributed data, though not only in the geographical sense. That is, various agents collect and own data that may be useful to others. In contrast to recent proposals that look into distributed and privacy-preserving learning (incentive-free), we explore here a framework called regression markets. There, agents aiming to improve their forecasts post a regression task, for which other agents may contribute by sharing their data for their features and get monetarily rewarded for it.The market design is for regression models that are linear in their parameters, and possibly sep-arable, with estimation performed based on either batch or online learning. Both in-sample and out-of-sample aspects are considered, with markets for fitting models in-sample, and then for improving genuine forecasts out-of-sample. Such regression markets rely on recent concepts within interpretability of machine learning approaches and cooperative game theory, with Shapley additive explanations. Besides introducing the market design and proving its desirable properties, application results are shown based on simulation studies (to highlight the salient features of the proposal) and with real-world case studies.

相關內容

Hierarchical forecasting problems arise when time series have a natural group structure, and predictions at multiple levels of aggregation and disaggregation across the groups are needed. In such problems, it is often desired to satisfy the aggregation constraints in a given hierarchy, referred to as hierarchical coherence in the literature. Maintaining hierarchical coherence while producing accurate forecasts can be a challenging problem, especially in the case of probabilistic forecasting. We present a novel method capable of accurate and coherent probabilistic forecasts for hierarchical time series. We call it Deep Poisson Mixture Network (DPMN). It relies on the combination of neural networks and a statistical model for the joint distribution of the hierarchical multivariate time series structure. By construction, the model guarantees hierarchical coherence and provides simple rules for aggregation and disaggregation of the predictive distributions. We perform an extensive empirical evaluation comparing the DPMN to other state-of-the-art methods which produce hierarchically coherent probabilistic forecasts on multiple public datasets. Compared to existing coherent probabilistic models, we obtained a relative improvement in the overall Continuous Ranked Probability Score (CRPS) of 17.1% on Australian domestic tourism data, 24.2 on the Favorita grocery sales dataset, and 6.9% on a San Francisco Bay Area highway traffic dataset.

Background: COVID-19 has become a challenge worldwide and properly planning of medical resources is the key to combating COVID-19. In the US Veteran Affairs Health Care System (VA), many of the enrollees are susceptible to COVID-19. Predicting the COVID-19 to allocate medical resources promptly becomes a critical issue. When the VA enrollees have COVID-19 symptoms, it is recommended that their first step should be to call the VA Call Center. For confirmed COVID-19 patients, the median time from the first symptom to hospital admission was seven days. By predicting the number of COVID-19 related calls, we could predict imminent surges in healthcare use and plan medical resources ahead. Objective: The study aims to develop a method to forecast the daily number of COVID-19 related calls for each of the 110 VA medical centers. Methods: In the proposed method, we pre-trained a model using a cluster of medical centers and fine-tuned it for individual medical centers. At the cluster level, we performed feature selection to select significant features and automatic hyper-parameter search to select optimal hyper-parameter value combinations for the model. Conclusions: This study proposed an accurate method to forecast the daily number of COVID-19 related calls for VA medical centers. The proposed method was able to overcome modeling challenges by grouping similar medical centers into clusters to enlarge the dataset for training models, and using hyper-parameter search to automatically find optimal hyper-parameter value combinations for models. With the proposed method, surges in health care can be predicted ahead. This allows health care practitioners to better plan medical resources and combat COVID-19.

Many assumptions in the federated learning literature present a best-case scenario that can not be satisfied in most real-world applications. An asynchronous setting reflects the realistic environment in which federated learning methods must be able to operate reliably. Besides varying amounts of non-IID data at participants, the asynchronous setting models heterogeneous client participation due to available computational power and battery constraints and also accounts for delayed communications between clients and the server. To reduce the communication overhead associated with asynchronous online federated learning (ASO-Fed), we use the principles of partial-sharing-based communication. In this manner, we reduce the communication load of the participants and, therefore, render participation in the learning task more accessible. We prove the convergence of the proposed ASO-Fed and provide simulations to analyze its behavior further. The simulations reveal that, in the asynchronous setting, it is possible to achieve the same convergence as the federated stochastic gradient (Online-FedSGD) while reducing the communication tenfold.

Consider the problem of learning a large number of response functions simultaneously based on the same input variables. The training data consist of a single independent random sample of the input variables drawn from a common distribution together with the associated responses. The input variables are mapped into a high-dimensional linear space, called the feature space, and the response functions are modelled as linear functionals of the mapped features, with coefficients calibrated via ordinary least squares. We provide convergence guarantees on the worst-case excess prediction risk by controlling the convergence rate of the excess risk uniformly in the response function. The dimension of the feature map is allowed to tend to infinity with the sample size. The collection of response functions, although potentially infinite, is supposed to have a finite Vapnik-Chervonenkis dimension. The bound derived can be applied when building multiple surrogate models in a reasonable computing time.

Time series forecasting is widely used in business intelligence, e.g., forecast stock market price, sales, and help the analysis of data trend. Most time series of interest are macroscopic time series that are aggregated from microscopic data. However, instead of directly modeling the macroscopic time series, rare literature studied the forecasting of macroscopic time series by leveraging data on the microscopic level. In this paper, we assume that the microscopic time series follow some unknown mixture probabilistic distributions. We theoretically show that as we identify the ground truth latent mixture components, the estimation of time series from each component could be improved because of lower variance, thus benefitting the estimation of macroscopic time series as well. Inspired by the power of Seq2seq and its variants on the modeling of time series data, we propose Mixture of Seq2seq (MixSeq), an end2end mixture model to cluster microscopic time series, where all the components come from a family of Seq2seq models parameterized by different parameters. Extensive experiments on both synthetic and real-world data show the superiority of our approach.

Spatio-temporal forecasting has numerous applications in analyzing wireless, traffic, and financial networks. Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data. Recent advances in deep learning allow for better modelling of spatial and temporal dependencies. While most of these models focus on obtaining accurate point forecasts, they do not characterize the prediction uncertainty. In this work, we consider the time-series data as a random realization from a nonlinear state-space model and target Bayesian inference of the hidden states for probabilistic forecasting. We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings. Thorough experimentation on several real world time-series datasets demonstrates that our approach provides better characterization of uncertainty while maintaining comparable accuracy to the state-of-the art point forecasting methods.

Molecular graph generation is a fundamental problem for drug discovery and has been attracting growing attention. The problem is challenging since it requires not only generating chemically valid molecular structures but also optimizing their chemical properties in the meantime. Inspired by the recent progress in deep generative models, in this paper we propose a flow-based autoregressive model for graph generation called GraphAF. GraphAF combines the advantages of both autoregressive and flow-based approaches and enjoys: (1) high model flexibility for data density estimation; (2) efficient parallel computation for training; (3) an iterative sampling process, which allows leveraging chemical domain knowledge for valency checking. Experimental results show that GraphAF is able to generate 68% chemically valid molecules even without chemical knowledge rules and 100% valid molecules with chemical rules. The training process of GraphAF is two times faster than the existing state-of-the-art approach GCPN. After fine-tuning the model for goal-directed property optimization with reinforcement learning, GraphAF achieves state-of-the-art performance on both chemical property optimization and constrained property optimization.

Deep Learning is applied to energy markets to predict extreme loads observed in energy grids. Forecasting energy loads and prices is challenging due to sharp peaks and troughs that arise due to supply and demand fluctuations from intraday system constraints. We propose deep spatio-temporal models and extreme value theory (EVT) to capture theses effects and in particular the tail behavior of load spikes. Deep LSTM architectures with ReLU and $\tanh$ activation functions can model trends and temporal dependencies while EVT captures highly volatile load spikes above a pre-specified threshold. To illustrate our methodology, we use hourly price and demand data from 4719 nodes of the PJM interconnection, and we construct a deep predictor. We show that DL-EVT outperforms traditional Fourier time series methods, both in-and out-of-sample, by capturing the observed nonlinearities in prices. Finally, we conclude with directions for future research.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

A social interaction is a social exchange between two or more individuals,where individuals modify and adjust their behaviors in response to their interaction partners. Our social interactions are one of most fundamental aspects of our lives and can profoundly affect our mood, both positively and negatively. With growing interest in virtual reality and avatar-mediated interactions,it is desirable to make these interactions natural and human like to promote positive effect in the interactions and applications such as intelligent tutoring systems, automated interview systems and e-learning. In this paper, we propose a method to generate facial behaviors for an agent. These behaviors include facial expressions and head pose and they are generated considering the users affective state. Our models learn semantically meaningful representations of the face and generate appropriate and temporally smooth facial behaviors in dyadic interactions.

北京阿比特科技有限公司