This review aims to systematically assess the current status and prospects of artificial intelligence (AI) in the rehabilitation management of patients with schizophrenia and their impact on the rehabilitation process. We selected 70 studies from 2012 to the present, focusing on application, technology categories, products, and data types of machine learning, deep learning, reinforcement learning, and other technologies in mental health interventions and management. The results indicate that AI can be widely used in symptom monitoring, relapse risk prediction, and rehabilitation treatment by analyzing ecological momentary assessment, behavioral, and speech data. This review further explores the potential challenges and future directions of emerging products, technologies, and analytical methods based on AI, such as social media analysis, serious games, and large language models in rehabilitation. In summary, this study systematically reviews the application status of AI in schizophrenia rehabilitation management and provides valuable insights and recommendations for future research paths.
Despite extensive research on adversarial training strategies to improve robustness, the decisions of even the most robust deep learning models can still be quite sensitive to imperceptible perturbations, creating serious risks when deploying them for high-stakes real-world applications. While detecting such cases may be critical, evaluating a model's vulnerability at a per-instance level using adversarial attacks is computationally too intensive and unsuitable for real-time deployment scenarios. The input space margin is the exact score to detect non-robust samples and is intractable for deep neural networks. This paper introduces the concept of margin consistency -- a property that links the input space margins and the logit margins in robust models -- for efficient detection of vulnerable samples. First, we establish that margin consistency is a necessary and sufficient condition to use a model's logit margin as a score for identifying non-robust samples. Next, through comprehensive empirical analysis of various robustly trained models on CIFAR10 and CIFAR100 datasets, we show that they indicate strong margin consistency with a strong correlation between their input space margins and the logit margins. Then, we show that we can effectively use the logit margin to confidently detect brittle decisions with such models and accurately estimate robust accuracy on an arbitrarily large test set by estimating the input margins only on a small subset. Finally, we address cases where the model is not sufficiently margin-consistent by learning a pseudo-margin from the feature representation. Our findings highlight the potential of leveraging deep representations to efficiently assess adversarial vulnerability in deployment scenarios.
This study aims to establish a computer-aided diagnostic system for lung lesions using endobronchial ultrasound (EBUS) to assist physicians in identifying lesion areas. During EBUS-transbronchial needle aspiration (EBUS-TBNA) procedures, hysicians rely on grayscale ultrasound images to determine the location of lesions. However, these images often contain significant noise and can be influenced by surrounding tissues or blood vessels, making identification challenging. Previous research has lacked the application of object detection models to EBUS-TBNA, and there has been no well-defined solution for the lack of annotated data in the EBUS-TBNA dataset. In related studies on ultrasound images, although models have been successful in capturing target regions for their respective tasks, their training and predictions have been based on two-dimensional images, limiting their ability to leverage temporal features for improved predictions. This study introduces a three-dimensional video-based object detection model. It first generates a set of improved queries using a diffusion model, then captures temporal correlations through an attention mechanism. A filtering mechanism selects relevant information from previous frames to pass to the current frame. Subsequently, a teacher-student model training approach is employed to further optimize the model using unlabeled data. By incorporating various data augmentation and feature alignment, the model gains robustness against interference. Test results demonstrate that this model, which captures spatiotemporal information and employs semi-supervised learning methods, achieves an Average Precision (AP) of 48.7 on the test dataset, outperforming other models. It also achieves an Average Recall (AR) of 79.2, significantly leading over existing models.
The emergence of Large Language Models (LLMs) and advancements in Artificial Intelligence (AI) offer an opportunity for computational social science research at scale. Building upon prior explorations of LLM agent design, our work introduces a simulated agent society where complex social relationships dynamically form and evolve over time. Agents are imbued with psychological drives and placed in a sandbox survival environment. We conduct an evaluation of the agent society through the lens of Thomas Hobbes's seminal Social Contract Theory (SCT). We analyze whether, as the theory postulates, agents seek to escape a brutish "state of nature" by surrendering rights to an absolute sovereign in exchange for order and security. Our experiments unveil an alignment: Initially, agents engage in unrestrained conflict, mirroring Hobbes's depiction of the state of nature. However, as the simulation progresses, social contracts emerge, leading to the authorization of an absolute sovereign and the establishment of a peaceful commonwealth founded on mutual cooperation. This congruence between our LLM agent society's evolutionary trajectory and Hobbes's theoretical account indicates LLMs' capability to model intricate social dynamics and potentially replicate forces that shape human societies. By enabling such insights into group behavior and emergent societal phenomena, LLM-driven multi-agent simulations, while unable to simulate all the nuances of human behavior, may hold potential for advancing our understanding of social structures, group dynamics, and complex human systems.
We introduce a simulation environment to facilitate research into emergent collective behaviour, with a focus on replicating the dynamics of ant colonies. By leveraging real-world data, the environment simulates a target ant trail that a controllable agent must learn to replicate, using sensory data observed by the target ant. This work aims to contribute to the neuroevolution of models for collective behaviour, focusing on evolving neural architectures that encode domain-specific behaviours in the network topology. By evolving models that can be modified and studied in a controlled environment, we can uncover the necessary conditions required for collective behaviours to emerge. We hope this environment will be useful to those studying the role of interactions in emergent behaviour within collective systems.
With the rapid development of artificial intelligence, large language models (LLMs) have made remarkable advancements in natural language processing. These models are trained on vast datasets to exhibit powerful language understanding and generation capabilities across various applications, including machine translation, chatbots, and agents. However, LLMs have revealed a variety of privacy and security issues throughout their life cycle, drawing significant academic and industrial attention. Moreover, the risks faced by LLMs differ significantly from those encountered by traditional language models. Given that current surveys lack a clear taxonomy of unique threat models across diverse scenarios, we emphasize the unique privacy and security threats associated with five specific scenarios: pre-training, fine-tuning, retrieval-augmented generation systems, deployment, and LLM-based agents. Addressing the characteristics of each risk, this survey outlines potential threats and countermeasures. Research on attack and defense situations can offer feasible research directions, enabling more areas to benefit from LLMs.
This paper investigates the potential of LLM-based conversational agents (CAs) to enhance critical reflection and mitigate design fixation in group design work. By challenging AI-generated recommendations and prevailing group opinions, these agents address issues such as groupthink and promote a more dynamic and inclusive design process. Key design considerations include optimizing intervention timing, ensuring clarity in counterarguments, and balancing critical thinking with designers' satisfaction. CAs can also adapt to various roles, supporting individual and collective reflection. Our work aligns with the "Death of the Design Researcher?" workshop's goals, emphasizing the transformative potential of generative AI in reshaping design practices and promoting ethical considerations. By exploring innovative uses of generative AI in group design contexts, we aim to stimulate discussion and open new pathways for future research and development, ultimately contributing to practical tools and resources for design researchers.
In the rapidly evolving landscape of artificial intelligence (AI), generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data. However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency, particularly in scenarios demanding low latency and high throughput. This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective, standing at the crux of advanced AI innovations and practical system optimizations. We provide in-depth analysis, covering a spectrum of solutions, ranging from cutting-edge algorithmic modifications to groundbreaking changes in system designs. The survey aims to provide a comprehensive understanding of the current state and future directions in efficient LLM serving, offering valuable insights for researchers and practitioners in overcoming the barriers of effective LLM deployment, thereby reshaping the future of AI.
For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent AI agents since the mid-20th century. However, these efforts have mainly focused on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a sufficiently general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile and remarkable capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many research efforts have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for AI agents. Building upon this, we present a conceptual framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored to suit different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge when they form societies, and the insights they offer for human society. Finally, we discuss a range of key topics and open problems within the field.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.