The monitoring of data generated by a large number of devices in Internet of Things (IoT) systems is an important and complex issue. Several studies have explored the use of generic rule engine, primarily based on the RETE algorithm, for monitoring the flow of device data. In order to solve the performance problem of the RETE algorithm in IoT scenarios, some studies have also proposed improved RETE algorithms. However, implementing modifications to the general rule engine remains challenges in practical applications. The Thingsboard open-source platform introduces an IoT-specific rule engine that does not rely on the RETE algorithm. Its interactive mode attracted attention from developers and researchers. However, the close integration between its rule module and the platform, as well as the difficulty in formulating rules for multiple devices, limits its flexibility. This paper presents an adaptable and user-friendly rule engine framework for monitoring and control IoT device data flows. The framework is easily extensible and allows for the formulation of rules contain multiple devices. We designed a Domain-Specific Language (DSL) for rule description. A prototype system of this framework was implemented to verify the validity of theoretical method. The framework has potential to be adaptable to a wide range of IoT scenarios and is especially effective in where real-time control demands are not as strict.
Molecular communication (MC) is a paradigm that employs molecules as information transmitters, hence, requiring unconventional transceivers and detection techniques for the Internet of Bio-Nano Things (IoBNT). In this study, we provide a novel MC model that incorporates a spherical transmitter and receiver with partial absorption. This model offers a more realistic representation than receiver architectures in literature, e.g. passive or entirely absorbing configurations. An optimization-based technique utilizing particle swarm optimization (PSO) is employed to accurately estimate the cumulative number of molecules received. This technique yields nearly constant correction parameters and demonstrates a significant improvement of 5 times in terms of root mean square error (RMSE). The estimated channel model provides an approximate analytical impulse response; hence, it is used for estimating channel parameters such as distance, diffusion coefficient, or a combination of both. We apply iterative maximum likelihood estimation (MLE) for the parameter estimation, which gives consistent errors compared to the estimated Cramer-Rao Lower Bound (CLRB).
The integration of experimental data into mathematical and computational models is crucial for enhancing their predictive power in real-world scenarios. However, the performance of data assimilation algorithms can be significantly degraded when measurements are corrupted by biased noise, altering the signal magnitude, or when the system dynamics lack smoothness, such as in the presence of fast oscillations or discontinuities. This paper focuses on variational state estimation using the so-called Parameterized Background Data Weak method, which relies on a parameterized background by a set of constraints, enabling state estimation by solving a minimization problem on a reduced-order background model, subject to constraints imposed by the input measurements. To address biased noise in observations, a modified formulation is proposed, incorporating a correction mechanism to handle rapid oscillations by treating them as slow-decaying modes based on a two-scale splitting of the classical reconstruction algorithm. The effectiveness of the proposed algorithms is demonstrated through various examples, including discontinuous signals and simulated Doppler ultrasound data.
In scenarios with limited available or high-quality data, training the function-to-function neural PDE solver in an unsupervised manner is essential. However, the efficiency and accuracy of existing methods are constrained by the properties of numerical algorithms, such as finite difference and pseudo-spectral methods, integrated during the training stage. These methods necessitate careful spatiotemporal discretization to achieve reasonable accuracy, leading to significant computational challenges and inaccurate simulations, particularly in cases with substantial spatiotemporal variations. To address these limitations, we propose the Monte Carlo Neural PDE Solver (MCNP Solver) for training unsupervised neural solvers via the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles. Compared to other unsupervised methods, MCNP Solver naturally inherits the advantages of the Monte Carlo method, which is robust against spatiotemporal variations and can tolerate coarse step size. In simulating the random walk of particles, we employ Heun's method for the convection process and calculate the expectation via the probability density function of neighbouring grid points during the diffusion process. These techniques enhance accuracy and circumvent the computational memory and time issues associated with Monte Carlo sampling, offering an improvement over traditional Monte Carlo methods. Our numerical experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency compared to other unsupervised baselines. The source code will be publicly available at: //github.com/optray/MCNP.
Task-oriented conversational datasets often lack topic variability and linguistic diversity. However, with the advent of Large Language Models (LLMs) pretrained on extensive, multilingual and diverse text data, these limitations seem overcome. Nevertheless, their generalisability to different languages and domains in dialogue applications remains uncertain without benchmarking datasets. This paper presents a holistic annotation approach for emotion and conversational quality in the context of bilingual customer support conversations. By performing annotations that take into consideration the complete instances that compose a conversation, one can form a broader perspective of the dialogue as a whole. Furthermore, it provides a unique and valuable resource for the development of text classification models. To this end, we present benchmarks for Emotion Recognition and Dialogue Quality Estimation and show that further research is needed to leverage these models in a production setting.
Profiling various application characteristics, including the number of different arithmetic operations performed, memory footprint, etc., dynamically is time- and space-consuming. On the other hand, static analysis methods, although fast, can be less accurate. This paper presents an LLVM-based probabilistic static analysis method that accurately predicts different program characteristics and estimates the reuse distance profile of a program by analyzing the LLVM IR file in constant time, regardless of program input size. We generate the basic-block-level control flow graph of the target application kernel and determine basic-block execution counts by solving the linear balance equation involving the adjacent basic blocks' transition probabilities. Finally, we represent the kernel memory accesses in a bracketed format and employ a recursive algorithm to calculate the reuse distance profile. The results show that our approach can predict application characteristics accurately compared to another LLVM-based dynamic code analysis tool, Byfl.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.