Existing methods to characterise the evolving condition of traumatic brain injury (TBI) patients in the intensive care unit (ICU) do not capture the context necessary for individualising treatment. We aimed to develop a modelling strategy which integrates all data stored in medical records to produce an interpretable disease course for each TBI patient's ICU stay. From a prospective, European cohort (n=1,550, 65 centres, 19 countries) of TBI patients, we extracted all 1,166 variables collected before or during ICU stay as well as 6-month functional outcome on the Glasgow Outcome Scale-Extended (GOSE). We trained recurrent neural network models to map a token-embedded time series representation of all variables (including missing data) to an ordinal GOSE prognosis every 2 hours. With repeated cross-validation, we evaluated calibration and the explanation of ordinal variance in GOSE with Somers' Dxy. Furthermore, we applied TimeSHAP to calculate the contribution of variables and prior timepoints towards transitions in patient trajectories. Our modelling strategy achieved calibration at 8 hours, and the full range of variables explained up to 52% (95% CI: 50-54%) of the variance in ordinal functional outcome. Up to 91% (90-91%) of this explanation was derived from pre-ICU and admission information. Information collected in the ICU increased explanation (by up to 5% [4-6%]), though not enough to counter poorer performance in longer-stay (>5.75 days) patients. Static variables with the highest contributions were physician prognoses and certain demographic and CT features. Among dynamic variables, markers of intracranial hypertension and neurological function contributed the most. Whilst static information currently accounts for the majority of functional outcome explanation, our data-driven analysis highlights investigative avenues to improve dynamic characterisation of longer-stay patients.
A growing number of central authorities use assignment mechanisms to allocate students to schools in a way that reflects student preferences and school priorities. However, most real-world mechanisms give students an incentive to be strategic and misreport their preferences. In this paper, we provide an identification approach for causal effects of school assignment on future outcomes that accounts for strategic misreporting. Misreporting may invalidate existing point-identification approaches, and we derive sharp bounds for causal effects that are robust to strategic behavior. Our approach applies to any mechanism as long as there exist placement scores and cutoffs that characterize that mechanism's allocation rule. We use data from a deferred acceptance mechanism that assigns students to more than 1,000 university-major combinations in Chile. Students behave strategically because the mechanism in Chile constrains the number of majors that students submit in their preferences to eight options. Our methodology takes that into account and partially identifies the effect of changes in school assignment on various graduation outcomes.
In recent years the use of Artificial Intelligence (AI) has become increasingly prevalent in a growing number of fields. As AI systems are being adopted in more high-stakes areas such as medicine and finance, ensuring that they are trustworthy is of increasing importance. A concern that is prominently addressed by the development and application of explainability methods, which are purported to increase trust from its users and wider society. While an increase in trust may be desirable, an analysis of literature from different research fields shows that an exclusive focus on increasing trust may not be warranted. Something which is well exemplified by the recent development in AI chatbots, which while highly coherent tend to make up facts. In this contribution, we investigate the concepts of trust, trustworthiness, and user reliance. In order to foster appropriate reliance on AI we need to prevent both disuse of these systems as well as overtrust. From our analysis of research on interpersonal trust, trust in automation, and trust in (X)AI, we identify the potential merit of the distinction between trust and distrust (in AI). We propose that alongside trust a healthy amount of distrust is of additional value for mitigating disuse and overtrust. We argue that by considering and evaluating both trust and distrust, we can ensure that users can rely appropriately on trustworthy AI, which can both be useful as well as fallible.
An algorithm for robust initial orbit determination (IOD) under perturbed orbital dynamics is presented. By leveraging map inversion techniques defined in the algebra of Taylor polynomials, this tool is capable of not only returning an highly accurate solution to the IOD problem, but also estimating a range of validity for the aforementioned solution in which the true orbit state should lie. Automatic domain splitting is then used on top of the IOD routines to ensure the local truncation error introduced by a polynomial representation of the state estimate remains below a predefined threshold to meet the specified requirements in accuracy. The algorithm is adapted to three types of ground based sensors, namely range radars, Doppler-only radars and optical telescopes by taking into account their different constraints in terms of available measurements and sensor noise. Its improved performance with respect to a Keplerian based IOD solution is finally demonstrated with large scale numerical simulations over a subset of tracked objects in low Earth orbit.
As Reinforcement Learning (RL) agents are increasingly employed in diverse decision-making problems using reward preferences, it becomes important to ensure that policies learned by these frameworks in mapping observations to a probability distribution of the possible actions are explainable. However, there is little to no work in the systematic understanding of these complex policies in a contrastive manner, i.e., what minimal changes to the policy would improve/worsen its performance to a desired level. In this work, we present COUNTERPOL, the first framework to analyze RL policies using counterfactual explanations in the form of minimal changes to the policy that lead to the desired outcome. We do so by incorporating counterfactuals in supervised learning in RL with the target outcome regulated using desired return. We establish a theoretical connection between Counterpol and widely used trust region-based policy optimization methods in RL. Extensive empirical analysis shows the efficacy of COUNTERPOL in generating explanations for (un)learning skills while keeping close to the original policy. Our results on five different RL environments with diverse state and action spaces demonstrate the utility of counterfactual explanations, paving the way for new frontiers in designing and developing counterfactual policies.
It is commonplace to use data containing personal information to build predictive models in the framework of empirical risk minimization (ERM). While these models can be highly accurate in prediction, results obtained from these models with the use of sensitive data may be susceptible to privacy attacks. Differential privacy (DP) is an appealing framework for addressing such data privacy issues by providing mathematically provable bounds on the privacy loss incurred when releasing information from sensitive data. Previous work has primarily concentrated on applying DP to unweighted ERM. We consider an important generalization to weighted ERM (wERM). In wERM, each individual's contribution to the objective function can be assigned varying weights. In this context, we propose the first differentially private wERM algorithm, backed by a rigorous theoretical proof of its DP guarantees under mild regularity conditions. Extending the existing DP-ERM procedures to wERM paves a path to deriving privacy-preserving learning methods for individualized treatment rules, including the popular outcome weighted learning (OWL). We evaluate the performance of the DP-wERM application to OWL in a simulation study and in a real clinical trial of melatonin for sleep health. All empirical results demonstrate the viability of training OWL models via wERM with DP guarantees while maintaining sufficiently useful model performance. Therefore, we recommend practitioners consider implementing the proposed privacy-preserving OWL procedure in real-world scenarios involving sensitive data.
We consider the vulnerability of fairness-constrained learning to small amounts of malicious noise in the training data. Konstantinov and Lampert (2021) initiated the study of this question and presented negative results showing there exist data distributions where for several fairness constraints, any proper learner will exhibit high vulnerability when group sizes are imbalanced. Here, we present a more optimistic view, showing that if we allow randomized classifiers, then the landscape is much more nuanced. For example, for Demographic Parity we show we can incur only a $\Theta(\alpha)$ loss in accuracy, where $\alpha$ is the malicious noise rate, matching the best possible even without fairness constraints. For Equal Opportunity, we show we can incur an $O(\sqrt{\alpha})$ loss, and give a matching $\Omega(\sqrt{\alpha})$lower bound. In contrast, Konstantinov and Lampert (2021) showed for proper learners the loss in accuracy for both notions is $\Omega(1)$. The key technical novelty of our work is how randomization can bypass simple "tricks" an adversary can use to amplify his power. We also consider additional fairness notions including Equalized Odds and Calibration. For these fairness notions, the excess accuracy clusters into three natural regimes $O(\alpha)$,$O(\sqrt{\alpha})$ and $O(1)$. These results provide a more fine-grained view of the sensitivity of fairness-constrained learning to adversarial noise in training data.
Stratification in both the design and analysis of randomized clinical trials is common. Despite features in automated randomization systems to re-confirm the stratifying variables, incorrect values of these variables may be entered. These errors are often detected during subsequent data collection and verification. Questions remain about whether to use the mis-reported initial stratification or the corrected values in subsequent analyses. It is shown that the likelihood function resulting from the design of randomized clinical trials supports the use of the corrected values. New definitions are proposed that characterize misclassification errors as `ignorable' and `non-ignorable'. Ignorable errors may depend on the correct strata and any other modeled baseline covariates, but they are otherwise unrelated to potential treatment outcomes. Data management review suggests most misclassification errors are arbitrarily produced by distracted investigators, so they are ignorable or at most weakly dependent on measured and unmeasured baseline covariates. Ignorable misclassification errors may produce a small increase in standard errors, but other properties of the planned analyses are unchanged (e.g., unbiasedness, confidence interval coverage). It is shown that unbiased linear estimation in the absence of misclassification errors remains unbiased when there are non-ignorable misclassification errors, and the corresponding confidence intervals based on the corrected strata values are conservative.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.