A growing number of central authorities use assignment mechanisms to allocate students to schools in a way that reflects student preferences and school priorities. However, most real-world mechanisms give students an incentive to be strategic and misreport their preferences. In this paper, we provide an identification approach for causal effects of school assignment on future outcomes that accounts for strategic misreporting. Misreporting may invalidate existing point-identification approaches, and we derive sharp bounds for causal effects that are robust to strategic behavior. Our approach applies to any mechanism as long as there exist placement scores and cutoffs that characterize that mechanism's allocation rule. We use data from a deferred acceptance mechanism that assigns students to more than 1,000 university-major combinations in Chile. Students behave strategically because the mechanism in Chile constrains the number of majors that students submit in their preferences to eight options. Our methodology takes that into account and partially identifies the effect of changes in school assignment on various graduation outcomes.
We introduce a metric for evaluating the robustness of a classifier, with particular attention to adversarial perturbations, in terms of expected functionality with respect to possible adversarial perturbations. A classifier is assumed to be non-functional (that is, has a functionality of zero) with respect to a perturbation bound if a conventional measure of performance, such as classification accuracy, is less than a minimally viable threshold when the classifier is tested on examples from that perturbation bound. Defining robustness in terms of an expected value is motivated by a domain general approach to robustness quantification.
Early warning systems (EWS) are predictive tools at the center of recent efforts to improve graduation rates in public schools across the United States. These systems assist in targeting interventions to individual students by predicting which students are at risk of dropping out. Despite significant investments in their widespread adoption, there remain large gaps in our understanding of the efficacy of EWS, and the role of statistical risk scores in education. In this work, we draw on nearly a decade's worth of data from a system used throughout Wisconsin to provide the first large-scale evaluation of the long-term impact of EWS on graduation outcomes. We present empirical evidence that the prediction system accurately sorts students by their dropout risk. We also find that it may have caused a single-digit percentage increase in graduation rates, though our empirical analyses cannot reliably rule out that there has been no positive treatment effect. Going beyond a retrospective evaluation of DEWS, we draw attention to a central question at the heart of the use of EWS: Are individual risk scores necessary for effectively targeting interventions? We propose a simple mechanism that only uses information about students' environments -- such as their schools, and districts -- and argue that this mechanism can target interventions just as efficiently as the individual risk score-based mechanism. Our argument holds even if individual predictions are highly accurate and effective interventions exist. In addition to motivating this simple targeting mechanism, our work provides a novel empirical backbone for the robust qualitative understanding among education researchers that dropout is structurally determined. Combined, our insights call into question the marginal value of individual predictions in settings where outcomes are driven by high levels of inequality.
We consider the problem of learning error covariance matrices for robotic state estimation. The convergence of a state estimator to the correct belief over the robot state is dependent on the proper tuning of noise models. During inference, these models are used to weigh different blocks of the Jacobian and error vector resulting from linearization and hence, additionally affect the stability and convergence of the non-linear system. We propose a gradient-based method to estimate well-conditioned covariance matrices by formulating the learning process as a constrained bilevel optimization problem over factor graphs. We evaluate our method against baselines across a range of simulated and real-world tasks and demonstrate that our technique converges to model estimates that lead to better solutions as evidenced by the improved tracking accuracy on unseen test trajectories.
Existing knowledge distillation methods generally use a teacher-student approach, where the student network solely learns from a well-trained teacher. However, this approach overlooks the inherent differences in learning abilities between the teacher and student networks, thus causing the capacity-gap problem. To address this limitation, we propose a novel method called SLKD.
We present a novel approach to address the challenge of generalization in offline reinforcement learning (RL), where the agent learns from a fixed dataset without any additional interaction with the environment. Specifically, we aim to improve the agent's ability to generalize to out-of-distribution goals. To achieve this, we propose to learn a dynamics model and check if it is equivariant with respect to a fixed type of transformation, namely translations in the state space. We then use an entropy regularizer to increase the equivariant set and augment the dataset with the resulting transformed samples. Finally, we learn a new policy offline based on the augmented dataset, with an off-the-shelf offline RL algorithm. Our experimental results demonstrate that our approach can greatly improve the test performance of the policy on the considered environments.
Implicit discourse relation recognition (IDRR) aims at recognizing the discourse relation between two text segments without an explicit connective. Recently, the prompt learning has just been applied to the IDRR task with great performance improvements over various neural network-based approaches. However, the discrete nature of the state-art-of-art prompting approach requires manual design of templates and answers, a big hurdle for its practical applications. In this paper, we propose a continuous version of prompt learning together with connective knowledge distillation, called AdaptPrompt, to reduce manual design efforts via continuous prompting while further improving performance via knowledge transfer. In particular, we design and train a few virtual tokens to form continuous templates and automatically select the most suitable one by gradient search in the embedding space. We also design an answer-relation mapping rule to generate a few virtual answers as the answer space. Furthermore, we notice the importance of annotated connectives in the training dataset and design a teacher-student architecture for knowledge transfer. Experiments on the up-to-date PDTB Corpus V3.0 validate our design objectives in terms of the better relation recognition performance over the state-of-the-art competitors.
The main premise of federated learning (FL) is that machine learning model updates are computed locally to preserve user data privacy. This approach avoids by design user data to ever leave the perimeter of their device. Once the updates aggregated, the model is broadcast to all nodes in the federation. However, without proper defenses, compromised nodes can probe the model inside their local memory in search for adversarial examples, which can lead to dangerous real-world scenarios. For instance, in image-based applications, adversarial examples consist of images slightly perturbed to the human eye getting misclassified by the local model. These adversarial images are then later presented to a victim node's counterpart model to replay the attack. Typical examples harness dissemination strategies such as altered traffic signs (patch attacks) no longer recognized by autonomous vehicles or seemingly unaltered samples that poison the local dataset of the FL scheme to undermine its robustness. Pelta is a novel shielding mechanism leveraging Trusted Execution Environments (TEEs) that reduce the ability of attackers to craft adversarial samples. Pelta masks inside the TEE the first part of the back-propagation chain rule, typically exploited by attackers to craft the malicious samples. We evaluate Pelta on state-of-the-art accurate models using three well-established datasets: CIFAR-10, CIFAR-100 and ImageNet. We show the effectiveness of Pelta in mitigating six white-box state-of-the-art adversarial attacks, such as Projected Gradient Descent, Momentum Iterative Method, Auto Projected Gradient Descent, the Carlini & Wagner attack. In particular, Pelta constitutes the first attempt at defending an ensemble model against the Self-Attention Gradient attack to the best of our knowledge. Our code is available to the research community at //github.com/queyrusi/Pelta.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.