亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the Mixup training paradigm, a model is trained using convex combinations of data points and their associated labels. Despite seeing very few true data points during training, models trained using Mixup seem to still minimize the original empirical risk and exhibit better generalization and robustness on various tasks when compared to standard training. In this paper, we investigate how these benefits of Mixup training rely on properties of the data in the context of classification. For minimizing the original empirical risk, we compute a closed form for the Mixup-optimal classification, which allows us to construct a simple dataset on which minimizing the Mixup loss can provably lead to learning a classifier that does not minimize the empirical loss on the data. On the other hand, we also give sufficient conditions for Mixup training to also minimize the original empirical risk. For generalization, we characterize the margin of a Mixup classifier, and use this to understand why the decision boundary of a Mixup classifier can adapt better to the full structure of the training data when compared to standard training. In contrast, we also show that, for a large class of linear models and linearly separable datasets, Mixup training leads to learning the same classifier as standard training.

相關內容

To improve instance-level detection/segmentation performance, existing self-supervised and semi-supervised methods extract either very task-unrelated or very task-specific training signals from unlabeled data. We argue that these two approaches, at the two extreme ends of the task-specificity spectrum, are suboptimal for the task performance. Utilizing too little task-specific training signals causes underfitting to the ground-truth labels of downstream tasks, while the opposite causes overfitting to the ground-truth labels. To this end, we propose a novel Class-agnostic Semi-supervised Pretraining (CaSP) framework to achieve a more favorable task-specificity balance in extracting training signals from unlabeled data. Compared to semi-supervised learning, CaSP reduces the task specificity in training signals by ignoring class information in the pseudo labels and having a separate pretraining stage that uses only task-unrelated unlabeled data. On the other hand, CaSP preserves the right amount of task specificity by leveraging box/mask-level pseudo labels. As a result, our pretrained model can better avoid underfitting/overfitting to ground-truth labels when finetuned on the downstream task. Using 3.6M unlabeled data, we achieve a remarkable performance gain of 4.7% over ImageNet-pretrained baseline on object detection. Our pretrained model also demonstrates excellent transferability to other detection and segmentation tasks/frameworks.

Deep learning has achieved many breakthroughs in modern classification tasks. Numerous architectures have been proposed for different data structures but when it comes to the loss function, the cross-entropy loss is the predominant choice. Recently, several alternative losses have seen revived interests for deep classifiers. In particular, empirical evidence seems to promote square loss but a theoretical justification is still lacking. In this work, we contribute to the theoretical understanding of square loss in classification by systematically investigating how it performs for overparametrized neural networks in the neural tangent kernel (NTK) regime. Interesting properties regarding the generalization error, robustness, and calibration error are revealed. We consider two cases, according to whether classes are separable or not. In the general non-separable case, fast convergence rate is established for both misclassification rate and calibration error. When classes are separable, the misclassification rate improves to be exponentially fast. Further, the resulting margin is proven to be lower bounded away from zero, providing theoretical guarantees for robustness. We expect our findings to hold beyond the NTK regime and translate to practical settings. To this end, we conduct extensive empirical studies on practical neural networks, demonstrating the effectiveness of square loss in both synthetic low-dimensional data and real image data. Comparing to cross-entropy, square loss has comparable generalization error but noticeable advantages in robustness and model calibration.

We propose a novel setting for learning, where the input domain is the image of a map defined on the product of two sets, one of which completely determines the labels. We derive a new risk bound for this setting that decomposes into a bias and an error term, and exhibits a surprisingly weak dependence on the true labels. Inspired by these results, we present an algorithm aimed at minimizing the bias term by exploiting the ability to sample from each set independently. We apply our setting to visual classification tasks, where our approach enables us to train classifiers on datasets that consist entirely of a single synthetic example of each class. On several standard benchmarks for real-world image classification, we achieve robust performance in the context-agnostic setting, with good generalization to real world domains, whereas training directly on real world data without our techniques yields classifiers that are brittle to perturbations of the background.

Recent interest in dataset shift has produced many methods for finding invariant distributions for prediction in new, unseen environments. However, these methods consider different types of shifts and have been developed under disparate frameworks, making it difficult to theoretically analyze how solutions differ with respect to stability and accuracy. Taking a causal graphical view, we use a flexible graphical representation to express various types of dataset shifts. We show that all invariant distributions correspond to a causal hierarchy of graphical operators which disable the edges in the graph that are responsible for the shifts. The hierarchy provides a common theoretical underpinning for understanding when and how stability to shifts can be achieved, and in what ways stable distributions can differ. We use it to establish conditions for minimax optimal performance across environments, and derive new algorithms that find optimal stable distributions. Using this new perspective, we empirically demonstrate that that there is a tradeoff between minimax and average performance.

Natural Language Understanding (NLU) is a branch of Natural Language Processing (NLP) that uses intelligent computer software to understand texts that encode human knowledge. Recent years have witnessed notable progress across various NLU tasks with deep learning techniques, especially with pretrained language models. Besides proposing more advanced model architectures, constructing more reliable and trustworthy datasets also plays a huge role in improving NLU systems, without which it would be impossible to train a decent NLU model. It's worth noting that the human ability of understanding natural language is flexible and robust. On the contrary, most of existing NLU systems fail to achieve desirable performance on out-of-domain data or struggle on handling challenging items (e.g., inherently ambiguous items, adversarial items) in the real world. Therefore, in order to have NLU models understand human language more effectively, it is expected to prioritize the study on robust natural language understanding. In this thesis, we deem that NLU systems are consisting of two components: NLU models and NLU datasets. As such, we argue that, to achieve robust NLU, the model architecture/training and the dataset are equally important. Specifically, we will focus on three NLU tasks to illustrate the robustness problem in different NLU tasks and our contributions (i.e., novel models and new datasets) to help achieve more robust natural language understanding. Moving forward, the ultimate goal for robust natural language understanding is to build NLU models which can behave humanly. That is, it's expected that robust NLU systems are capable to transfer the knowledge from training corpus to unseen documents more reliably and survive when encountering challenging items even if the system doesn't know a priori of users' inputs.

The focus of disentanglement approaches has been on identifying independent factors of variation in data. However, the causal variables underlying real-world observations are often not statistically independent. In this work, we bridge the gap to real-world scenarios by analyzing the behavior of the most prominent disentanglement approaches on correlated data in a large-scale empirical study (including 4260 models). We show and quantify that systematically induced correlations in the dataset are being learned and reflected in the latent representations, which has implications for downstream applications of disentanglement such as fairness. We also demonstrate how to resolve these latent correlations, either using weak supervision during training or by post-hoc correcting a pre-trained model with a small number of labels.

Multi-task learning (MTL) aims to improve the generalization of several related tasks by learning them jointly. As a comparison, in addition to the joint training scheme, modern meta-learning allows unseen tasks with limited labels during the test phase, in the hope of fast adaptation over them. Despite the subtle difference between MTL and meta-learning in the problem formulation, both learning paradigms share the same insight that the shared structure between existing training tasks could lead to better generalization and adaptation. In this paper, we take one important step further to understand the close connection between these two learning paradigms, through both theoretical analysis and empirical investigation. Theoretically, we first demonstrate that MTL shares the same optimization formulation with a class of gradient-based meta-learning (GBML) algorithms. We then prove that for over-parameterized neural networks with sufficient depth, the learned predictive functions of MTL and GBML are close. In particular, this result implies that the predictions given by these two models are similar over the same unseen task. Empirically, we corroborate our theoretical findings by showing that, with proper implementation, MTL is competitive against state-of-the-art GBML algorithms on a set of few-shot image classification benchmarks. Since existing GBML algorithms often involve costly second-order bi-level optimization, our first-order MTL method is an order of magnitude faster on large-scale datasets such as mini-ImageNet. We believe this work could help bridge the gap between these two learning paradigms, and provide a computationally efficient alternative to GBML that also supports fast task adaptation.

Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning. At the core of our analysis is a simple but realistic ``expansion'' assumption, which states that a low-probability subset of the data must expand to a neighborhood with large probability relative to the subset. We also assume that neighborhoods of examples in different classes have minimal overlap. We prove that under these assumptions, the minimizers of population objectives based on self-training and input-consistency regularization will achieve high accuracy with respect to ground-truth labels. By using off-the-shelf generalization bounds, we immediately convert this result to sample complexity guarantees for neural nets that are polynomial in the margin and Lipschitzness. Our results help explain the empirical successes of recently proposed self-training algorithms which use input consistency regularization.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Training large deep neural networks on massive datasets is computationally very challenging. There has been recent surge in interest in using large batch stochastic optimization methods to tackle this issue. The most prominent algorithm in this line of research is LARS, which by employing layerwise adaptive learning rates trains ResNet on ImageNet in a few minutes. However, LARS performs poorly for attention models like BERT, indicating that its performance gains are not consistent across tasks. In this paper, we first study a principled layerwise adaptation strategy to accelerate training of deep neural networks using large mini-batches. Using this strategy, we develop a new layerwise adaptive large batch optimization technique called LAMB; we then provide convergence analysis of LAMB as well as LARS, showing convergence to a stationary point in general nonconvex settings. Our empirical results demonstrate the superior performance of LAMB across various tasks such as BERT and ResNet-50 training with very little hyperparameter tuning. In particular, for BERT training, our optimizer enables use of very large batch sizes of 32868 without any degradation of performance. By increasing the batch size to the memory limit of a TPUv3 Pod, BERT training time can be reduced from 3 days to just 76 minutes (Table 1).

北京阿比特科技有限公司