Motivated by several examples, we consider a general framework of learning with linear loss functions. In this context, we provide excess risk and estimation bounds that hold with large probability for four estimators: ERM, minmax MOM and their regularized versions. These general bounds are applied for the problem of robustness in sparse PCA. In particular, we improve the state of the art result for this this problems, obtain results under weak moment assumptions as well as for adversarial contaminated data.
This paper develops some theory of the matrix Dyson equation (MDE) for correlated linearizations and uses it to solve a problem on asymptotic deterministic equivalent for the test error in random features regression. The theory developed for the correlated MDE includes existence-uniqueness, spectral support bounds, and stability properties of the MDE. This theory is new for constructing deterministic equivalents for pseudoresolvents of a class of correlated linear pencils. In the application, this theory is used to give a deterministic equivalent of the test error in random features ridge regression, in a proportional scaling regime, wherein we have conditioned on both training and test datasets.
In this paper, we propose a learning-based image fragment pair-searching and -matching approach to solve the challenging restoration problem. Existing works use rule-based methods to match similar contour shapes or textures, which are always difficult to tune hyperparameters for extensive data and computationally time-consuming. Therefore, we propose a neural network that can effectively utilize neighbor textures with contour shape information to fundamentally improve performance. First, we employ a graph-based network to extract the local contour and texture features of fragments. Then, for the pair-searching task, we adopt a linear transformer-based module to integrate these local features and use contrastive loss to encode the global features of each fragment. For the pair-matching task, we design a weighted fusion module to dynamically fuse extracted local contour and texture features, and formulate a similarity matrix for each pair of fragments to calculate the matching score and infer the adjacent segment of contours. To faithfully evaluate our proposed network, we created a new image fragment dataset through an algorithm we designed that tears complete images into irregular fragments. The experimental results show that our proposed network achieves excellent pair-searching accuracy, reduces matching errors, and significantly reduces computational time. Details, sourcecode, and data are available in our supplementary material.
While question answering over knowledge bases (KBQA) has shown progress in addressing factoid questions, KBQA with numerical reasoning remains relatively unexplored. In this paper, we focus on the complex numerical reasoning in KBQA and propose a new task, NR-KBQA, which necessitates the ability to perform both multi-hop reasoning and numerical reasoning. We design a logic form in Python format called PyQL to represent the reasoning process of numerical reasoning questions. To facilitate the development of NR-KBQA, we present a large dataset called MarkQA, which is automatically constructed from a small set of seeds. Each question in MarkQA is equipped with its corresponding SPARQL query, alongside the step-by-step reasoning process in the QDMR format and PyQL program. Experimental results of some state-of-the-art QA methods on the MarkQA show that complex numerical reasoning in KBQA faces great challenges.
Modeling excess remains to be an important topic in insurance data modeling. Among the alternatives of modeling excess, the Peaks Over Threshold (POT) framework with Generalized Pareto distribution (GPD) is regarded as an efficient approach due to its flexibility. However, the selection of an appropriate threshold for such framework is a major difficulty. To address such difficulty, we applied several accumulation tests along with Anderson-Darling test to determine an optimal threshold. Based on the selected thresholds, the fitted GPD with the estimated quantiles can be found. We applied the procedure to the well-known Norwegian Fire Insurance data and constructed the confidence intervals for the Value-at-Risks (VaR). The accumulation test approach provides satisfactory performance in modeling the high quantiles of Norwegian Fire Insurance data compared to the previous graphical methods.
We present a novel deep learning method for estimating time-dependent parameters in Markov processes through discrete sampling. Departing from conventional machine learning, our approach reframes parameter approximation as an optimization problem using the maximum likelihood approach. Experimental validation focuses on parameter estimation in multivariate regression and stochastic differential equations (SDEs). Theoretical results show that the real solution is close to SDE with parameters approximated using our neural network-derived under specific conditions. Our work contributes to SDE-based model parameter estimation, offering a versatile tool for diverse fields.
We study computational aspects of repulsive Gibbs point processes, which are probabilistic models of interacting particles in a finite-volume region of space. We introduce an approach for reducing a Gibbs point process to the hard-core model, a well-studied discrete spin system. Given an instance of such a point process, our reduction generates a random graph drawn from a natural geometric model. We show that the partition function of a hard-core model on graphs generated by the geometric model concentrates around the partition function of the Gibbs point process. Our reduction allows us to use a broad range of algorithms developed for the hard-core model to sample from the Gibbs point process and approximate its partition function. This is, to the extend of our knowledge, the first approach that deals with pair potentials of unbounded range. We compare the resulting algorithms with recently established results and study further properties of the random geometric graphs with respect to the hard-core model.
In this work, we use the integral definition of the fractional Laplace operator and study a sparse optimal control problem involving a fractional, semilinear, and elliptic partial differential equation as state equation; control constraints are also considered. We establish the existence of optimal solutions and first and second order optimality conditions. We also analyze regularity properties for optimal variables. We propose and analyze two finite element strategies of discretization: a fully discrete scheme, where the control variable is discretized with piecewise constant functions, and a semidiscrete scheme, where the control variable is not discretized. For both discretization schemes, we analyze convergence properties and a priori error bounds.
Integrated computational materials engineering (ICME) has significantly enhanced the systemic analysis of the relationship between microstructure and material properties, paving the way for the development of high-performance materials. However, analyzing microstructure-sensitive material behavior remains challenging due to the scarcity of three-dimensional (3D) microstructure datasets. Moreover, this challenge is amplified if the microstructure is anisotropic, as this results in anisotropic material properties as well. In this paper, we present a framework for reconstruction of anisotropic microstructures solely based on two-dimensional (2D) micrographs using conditional diffusion-based generative models (DGMs). The proposed framework involves spatial connection of multiple 2D conditional DGMs, each trained to generate 2D microstructure samples for three different orthogonal planes. The connected multiple reverse diffusion processes then enable effective modeling of a Markov chain for transforming noise into a 3D microstructure sample. Furthermore, a modified harmonized sampling is employed to enhance the sample quality while preserving the spatial connection between the slices of anisotropic microstructure samples in 3D space. To validate the proposed framework, the 2D-to-3D reconstructed anisotropic microstructure samples are evaluated in terms of both the spatial correlation function and the physical material behavior. The results demonstrate that the framework is capable of reproducing not only the statistical distribution of material phases but also the material properties in 3D space. This highlights the potential application of the proposed 2D-to-3D reconstruction framework in establishing microstructure-property linkages, which could aid high-throughput material design for future studies
In this paper we present a novel approach for the design of high order general boundary conditions when approximating solutions of the Euler equations on domains with curved boundaries, using meshes which may not be boundary conformal. When dealing with curved boundaries and/or unfitted discretizations, the consistency of boundary conditions is a well-known challenge, especially in the context of high order schemes. In order to tackle such consistency problems, the so-called Reconstruction for Off-site Data (ROD) method has been recently introduced in the finite volume framework: it is based on performing a boundary polynomial reconstruction that embeds the considered boundary treatment thanks to the implementation of a constrained minimization problem. This work is devoted to the development of the ROD approach in the context of discontinuous finite elements. We use the genuine space-time nature of the local ADER predictors to reformulate the ROD as a single space-time reconstruction procedure. This allows us to avoid a new reconstruction (linear system inversion) at each sub-time node and retrieve a single space-time polynomial that embeds the considered boundary conditions for the entire space-time element. Several numerical experiments are presented proving the consistency of the new approach for all kinds of boundary conditions. Computations involving the interaction of shocks with embedded curved boundaries are made possible through an a posteriori limiting technique.
In survival analysis, complex machine learning algorithms have been increasingly used for predictive modeling. Given a collection of features available for inclusion in a predictive model, it may be of interest to quantify the relative importance of a subset of features for the prediction task at hand. In particular, in HIV vaccine trials, participant baseline characteristics are used to predict the probability of infection over the intended follow-up period, and investigators may wish to understand how much certain types of predictors, such as behavioral factors, contribute toward overall predictiveness. Time-to-event outcomes such as time to infection are often subject to right censoring, and existing methods for assessing variable importance are typically not intended to be used in this setting. We describe a broad class of algorithm-agnostic variable importance measures for prediction in the context of survival data. We propose a nonparametric efficient estimation procedure that incorporates flexible learning of nuisance parameters, yields asymptotically valid inference, and enjoys double-robustness. We assess the performance of our proposed procedure via numerical simulations and analyze data from the HVTN 702 study to inform enrollment strategies for future HIV vaccine trials.