Communication in Millimeter wave (mmWave) band relies on narrow beams due to directionality, high path loss, and shadowing. One can use beam alignment (BA) techniques to find and adjust the direction of these narrow beams. In this paper, BA at the base station (BS) is considered, where the BS sends a set of BA packets to scan different angular regions while the user listens to the channel and sends feedback to the BS for each received packet. It is assumed that the packets and feedback received at the user and BS, respectively, can be correctly decoded. Motivated by practical constraints such as propagation delay, a feedback delay for each BA packet is considered. At the end of the BA, the BS allocates a narrow beam to the user including its angle of departure for data transmission and the objective is to maximize the resulting expected beamforming gain. A general framework for studying this problem is proposed based on which a lower bound on the optimal performance as well as an optimality achieving scheme are obtained. Simulation results reveal significant performance improvements over the state-of-the-art BA methods in the presence of feedback delay.
Optimal feedback control (OFC) is a theory from the motor control literature that explains how humans move their body to achieve a certain goal, e.g., pointing with the finger. OFC is based on the assumption that humans aim to control their body optimally, within the constraints imposed by body, environment, and task. In this paper, we explain how this theory can be applied to understanding Human-Computer Interaction (HCI) in the case of pointing. We propose that the human body and computer dynamics can be interpreted as a single dynamical system. The system state is controlled by the user via muscle control signals, and estimated from observations. Between-trial variability arises from signal-dependent control noise and observation noise. We compare four different models from optimal control theory and evaluate to what degree these models can replicate movements in the case of mouse pointing. We introduce a procedure to identify parameters that best explain observed user behavior. To support HCI researchers in simulating, analyzing, and optimizing interaction movements, we provide the Python toolbox OFC4HCI. We conclude that OFC presents a powerful framework for HCI to understand and simulate motion of the human body and of the interface on a moment by moment basis.
As mobile edge computing (MEC) finds widespread use for relieving the computational burden of compute- and interaction-intensive applications on end user devices, understanding the resulting delay and cost performance is drawing significant attention. While most existing works focus on singletask offloading in single-hop MEC networks, next generation applications (e.g., industrial automation, augmented/virtual reality) require advance models and algorithms for dynamic configuration of multi-task services over multi-hop MEC networks. In this work, we leverage recent advances in dynamic cloud network control to provide a comprehensive study of the performance of multi-hop MEC networks, addressing the key problems of multi-task offloading, timely packet scheduling, and joint computation and communication resource allocation. We present a fully distributed algorithm based on Lyapunov control theory that achieves throughput-optimal performance with delay and cost guarantees. Simulation results validate our theoretical analysis and provide insightful guidelines on the interplay between communication and computation resources in MEC networks.
We present a method to simulate movement in interaction with computers, using Model Predictive Control (MPC). The method starts from understanding interaction from an Optimal Feedback Control (OFC) perspective. We assume that users aim to minimize an internalized cost function, subject to the constraints imposed by the human body and the interactive system. In contrast to previous linear approaches used in HCI, MPC can compute optimal controls for nonlinear systems. This allows us to use state-of-the-art biomechanical models and handle nonlinearities that occur in almost any interactive system. Instead of torque actuation, our model employs second-order muscles acting directly at the joints. We compare three different cost functions and evaluate the simulated trajectories against user movements in a Fitts' Law type pointing study with four different interaction techniques. Our results show that the combination of distance, control, and joint acceleration cost matches individual users' movements best, and predicts movements with an accuracy that is within the between-user variance. To aid HCI researchers and designers, we introduce CFAT, a novel method to identify maximum voluntary torques in joint-actuated models based on experimental data, and give practical advice on how to simulate human movement for different users, interaction techniques, and tasks.
We consider the offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset. This problem setting is appealing in many real-world scenarios, where direct interaction with the environment is costly or risky, and where the resulting policy should comply with safety constraints. However, it is challenging to compute a policy that guarantees satisfying the cost constraints in the offline RL setting, since the off-policy evaluation inherently has an estimation error. In this paper, we present an offline constrained RL algorithm that optimizes the policy in the space of the stationary distribution. Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction. Experimental results show that COptiDICE attains better policies in terms of constraint satisfaction and return-maximization, outperforming baseline algorithms.
We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on $n$ independent replicates $\left\{X_i(t)\::\: t\in [0,1]\right\}_{1 \leq i \leq n}$, observed sparsely and irregularly on the unit interval, and subject to additive noise corruption. By \textit{sparse} we intend to mean that the number of measurements per path can be arbitrary (as small as two), and remain constant with respect to $n$. We focus on time-inhomogeneous SDE of the form $dX_t = \mu(t)X_t^{\alpha}dt + \sigma(t)X_t^{\beta}dW_t$, where $\alpha \in \{0,1\}$ and $\beta \in \{0,1/2,1\}$, which includes prominent examples such as Brownian motion, Ornstein-Uhlenbeck process, geometric Brownian motion, and Brownian bridge. Our estimators are constructed by relating the local (drift/diffusion) parameters of the diffusion to their global parameters (mean/covariance, and their derivatives) by means of an apparently novel PDE. This allows us to use methods inspired by functional data analysis, and pool information across the sparsely measured paths. The methodology we develop is fully non-parametric and avoids any functional form specification on the time-dependency of either the drift function or the diffusion function. We establish almost sure uniform asymptotic convergence rates of the proposed estimators as the number of observed curves $n$ grows to infinity. Our rates are non-asymptotic in the number of measurements per path, explicitly reflecting how different sampling frequency might affect the speed of convergence. Our framework suggests possible further fruitful interactions between FDA and SDE methods in problems with replication.
We study the performance of a phase-noise impaired double reconfigurable intelligent surface (RIS)-aided multiuser (MU) multiple-input single-output (MISO) system under spatial correlation at both RISs and base-station (BS). The downlink achievable rate is derived in closed-form under maximum ratio transmission (MRT) precoding. In addition, we obtain the optimal phase-shift design at both RISs in closed-form for the considered channel and phase-noise models. Numerical results validate the analytical expressions, and highlight the effects of different system parameters on the achievable rate. Our analysis shows that phase-noise can severely degrade the performance when users do not have direct links to both RISs, and can only be served via the double-reflection link. Also, we show that high spatial correlation at RISs is essential for high achievable rates.
Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.
In this paper, we provide a general framework for studying multi-agent online learning problems in the presence of delays and asynchronicities. Specifically, we propose and analyze a class of adaptive dual averaging schemes in which agents only need to accumulate gradient feedback received from the whole system, without requiring any between-agent coordination. In the single-agent case, the adaptivity of the proposed method allows us to extend a range of existing results to problems with potentially unbounded delays between playing an action and receiving the corresponding feedback. In the multi-agent case, the situation is significantly more complicated because agents may not have access to a global clock to use as a reference point; to overcome this, we focus on the information that is available for producing each prediction rather than the actual delay associated with each feedback. This allows us to derive adaptive learning strategies with optimal regret bounds, even in a fully decentralized, asynchronous environment. Finally, we also analyze an "optimistic" variant of the proposed algorithm which is capable of exploiting the predictability of problems with a slower variation and leads to improved regret bounds.
Most existing works of polar codes focus on the analysis of block error probability. However, in many scenarios, bit error probability is also important for evaluating the performance of channel codes. In this paper, we establish a new framework to analyze the bit error probability of polar codes. Specifically, by revisiting the error event of bit-channel, we first introduce the conditional bit error probability as a metric to evaluate the reliability of bit-channel for both systematic and non-systematic polar codes. Guided by the concept of polar subcode, we then derive an upper bound on the conditional bit error probability of each bit-channel, and accordingly, an upper bound on the bit error probability of polar codes. Based on these, two types of construction metrics aiming at minimizing the bit error probability of polar codes are proposed, which are of linear computational complexity and explicit forms. Simulation results show that the polar codes constructed by the proposed methods can outperform those constructed by the conventional methods.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.