Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at //github.com/ZrrSkywalker/Personalize-SAM
Adapting a segmentation model from a labeled source domain to a target domain, where a single unlabeled datum is available, is one the most challenging problems in domain adaptation and is otherwise known as one-shot unsupervised domain adaptation (OSUDA). Most of the prior works have addressed the problem by relying on style transfer techniques, where the source images are stylized to have the appearance of the target domain. Departing from the common notion of transferring only the target ``texture'' information, we leverage text-to-image diffusion models (e.g., Stable Diffusion) to generate a synthetic target dataset with photo-realistic images that not only faithfully depict the style of the target domain, but are also characterized by novel scenes in diverse contexts. The text interface in our method Data AugmenTation with diffUsion Models (DATUM) endows us with the possibility of guiding the generation of images towards desired semantic concepts while respecting the original spatial context of a single training image, which is not possible in existing OSUDA methods. Extensive experiments on standard benchmarks show that our DATUM surpasses the state-of-the-art OSUDA methods by up to +7.1%. The implementation is available at //github.com/yasserben/DATUM
We address personalized image enhancement in this study, where we enhance input images for each user based on the user's preferred images. Previous methods apply the same preferred style to all input images (i.e., only one style for each user); in contrast to these methods, we aim to achieve content-aware personalization by applying different styles to each image considering the contents. For content-aware personalization, we make two contributions. First, we propose a method named masked style modeling, which can predict a style for an input image considering the contents by using the framework of masked language modeling. Second, to allow this model to consider the contents of images, we propose a novel training scheme where we download images from Flickr and create pseudo input and retouched image pairs using a degrading model. We conduct quantitative evaluations and a user study, and our method trained using our training scheme successfully achieves content-aware personalization; moreover, our method outperforms other previous methods in this field. Our source code is available at //github.com/satoshi-kosugi/masked-style-modeling.
Reinforcement Learning (RL) algorithms can solve challenging control problems directly from image observations, but they often require millions of environment interactions to do so. Recently, model-based RL algorithms have greatly improved sample-efficiency by concurrently learning an internal model of the world, and supplementing real environment interactions with imagined rollouts for policy improvement. However, learning an effective model of the world from scratch is challenging, and in stark contrast to humans that rely heavily on world understanding and visual cues for learning new skills. In this work, we investigate whether internal models learned by modern model-based RL algorithms can be leveraged to solve new, distinctly different tasks faster. We propose Model-Based Cross-Task Transfer (XTRA), a framework for sample-efficient online RL with scalable pretraining and finetuning of learned world models. By offline multi-task pretraining and online cross-task finetuning, we achieve substantial improvements over a baseline trained from scratch; we improve mean performance of model-based algorithm EfficientZero by 23%, and by as much as 71% in some instances.
In this study, we address local photo enhancement to improve the aesthetic quality of an input image by applying different effects to different regions. Existing photo enhancement methods are either not content-aware or not local; therefore, we propose a crowd-powered local enhancement method for content-aware local enhancement, which is achieved by asking crowd workers to locally optimize parameters for image editing functions. To make it easier to locally optimize the parameters, we propose an active learning based local filter. The parameters need to be determined at only a few key pixels selected by an active learning method, and the parameters at the other pixels are automatically predicted using a regression model. The parameters at the selected key pixels are independently optimized, breaking down the optimization problem into a sequence of single-slider adjustments. Our experiments show that the proposed filter outperforms existing filters, and our enhanced results are more visually pleasing than the results by the existing enhancement methods. Our source code and results are available at //github.com/satoshi-kosugi/crowd-powered.
The variety of objects in the real world is nearly unlimited and is thus impossible to capture using models trained on a fixed set of categories. As a result, in recent years, open-vocabulary methods have attracted the interest of the community. This paper proposes a new method for zero-shot open-vocabulary segmentation. Prior work largely relies on contrastive training using image-text pairs, leveraging grouping mechanisms to learn image features that are both aligned with language and well-localised. This however can introduce ambiguity as the visual appearance of images with similar captions often varies. Instead, we leverage the generative properties of large-scale text-to-image diffusion models to sample a set of support images for a given textual category. This provides a distribution of appearances for a given text circumventing the ambiguity problem. We further propose a mechanism that considers the contextual background of the sampled images to better localise objects and segment the background directly. We show that our method can be used to ground several existing pre-trained self-supervised feature extractors in natural language and provide explainable predictions by mapping back to regions in the support set. Our proposal is training-free, relying on pre-trained components only, yet, shows strong performance on a range of open-vocabulary segmentation benchmarks, obtaining a lead of more than 10% on the Pascal VOC benchmark.
In this paper, we propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments in minimally invasive surgeries. We redefine the task as text promptable, thereby enabling a more nuanced comprehension of surgical instruments and adaptability to new instrument types. Inspired by recent advancements in vision-language models, we leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder consisting of attention- and convolution-based prompting schemes for surgical instrument segmentation prediction. Our model leverages multiple text prompts for each surgical instrument through a new mixture of prompts mechanism, resulting in enhanced segmentation performance. Additionally, we introduce a hard instrument area reinforcement module to improve image feature comprehension and segmentation precision. Extensive experiments on EndoVis2017 and EndoVis2018 datasets demonstrate our model's superior performance and promising generalization capability. To our knowledge, this is the first implementation of a promptable approach to surgical instrument segmentation, offering significant potential for practical application in the field of robotic-assisted surgery.
Score-matching and diffusion models have emerged as state-of-the-art generative models for both conditional and unconditional generation. Classifier-guided diffusion models are created by training a classifier on samples obtained from the forward-diffusion process (i.e., from data to noise). In this paper, we propose denoising-assisted (DA) classifiers wherein the diffusion classifier is trained using both noisy and denoised examples as simultaneous inputs to the model. We differentiate between denoising-assisted (DA) classifiers and noisy classifiers, which are diffusion classifiers that are only trained on noisy examples. Our experiments on Cifar10 and Imagenet show that DA-classifiers improve over noisy classifiers both quantitatively in terms of generalization to test data and qualitatively in terms of perceptually-aligned classifier-gradients and generative modeling metrics. Finally, we describe a semi-supervised framework for training diffusion classifiers and our experiments, that also include positive-unlabeled settings, demonstrate improved generalization of DA-classifiers over noisy classifiers.
Partially-supervised instance segmentation is a task which requests segmenting objects from novel unseen categories via learning on limited seen categories with annotated masks thus eliminating demands of heavy annotation burden. The key to addressing this task is to build an effective class-agnostic mask segmentation model. Unlike previous methods that learn such models only on seen categories, in this paper, we propose a new method, named ContrastMask, which learns a mask segmentation model on both seen and unseen categories under a unified pixel-level contrastive learning framework. In this framework, annotated masks of seen categories and pseudo masks of unseen categories serve as a prior for contrastive learning, where features from the mask regions (foreground) are pulled together, and are contrasted against those from the background, and vice versa. Through this framework, feature discrimination between foreground and background is largely improved, facilitating learning of the class-agnostic mask segmentation model. Exhaustive experiments on the COCO dataset demonstrate the superiority of our method, which outperforms previous state-of-the-arts.
Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.