亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The incorporation of Artificial Intelligence (AI) models into various optimization systems is on the rise. Yet, addressing complex urban and environmental management problems normally requires in-depth domain science and informatics expertise. This expertise is essential for deriving data and simulation-driven for informed decision support. In this context, we investigate the potential of leveraging the pre-trained Large Language Models (LLMs). By adopting ChatGPT API as the reasoning core, we outline an integrated workflow that encompasses natural language processing, methontology-based prompt tuning, and transformers. This workflow automates the creation of scenario-based ontology using existing research articles and technical manuals of urban datasets and simulations. The outcomes of our methodology are knowledge graphs in widely adopted ontology languages (e.g., OWL, RDF, SPARQL). These facilitate the development of urban decision support systems by enhancing the data and metadata modeling, the integration of complex datasets, the coupling of multi-domain simulation models, and the formulation of decision-making metrics and workflow. The feasibility of our methodology is evaluated through a comparative analysis that juxtaposes our AI-generated ontology with the well-known Pizza Ontology employed in tutorials for popular ontology software (e.g., prot\'eg\'e). We close with a real-world case study of optimizing the complex urban system of multi-modal freight transportation by generating anthologies of various domain data and simulations to support informed decision-making.

相關內容

決策支持系統(Decision Support Systems)期刊中發表的文章的共同主線是它們與支持增強決策制定的理論和技術問題的相關性。所涉及的領域可能包括基礎、功能、接口、實現、影響和決策支持系統(DSS)的評估。手稿可以從不同的方法和方法學中獲得,包括決策理論、經濟學、計量經濟學、統計學、計算機支持的協作工作、數據庫管理、語言學、管理科學、數學建模、運營管理、認知科學、心理學、用戶界面管理等。但是,一份側重于對任何這些相關領域的直接貢獻的手稿應提交給適合于特定領域的機構。 官網地址:

Neural network representations of simple models, such as linear regression, are being studied increasingly to better understand the underlying principles of deep learning algorithms. However, neural representations of distributional regression models, such as the Cox model, have received little attention so far. We close this gap by proposing a framework for distributional regression using inverse flow transformations (DRIFT), which includes neural representations of the aforementioned models. We empirically demonstrate that the neural representations of models in DRIFT can serve as a substitute for their classical statistical counterparts in several applications involving continuous, ordered, time-series, and survival outcomes. We confirm that models in DRIFT empirically match the performance of several statistical methods in terms of estimation of partial effects, prediction, and aleatoric uncertainty quantification. DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.

Linearizability is a commonly accepted correctness criterion for concurrent data structures. However, verifying linearizability of highly concurrent data structures is still a challenging task. In this paper, we present a simple and complete proof technique for verifying linearizability of concurrent stacks. Our proof technique reduces linearizability of concurrent stacks to establishing a set of conditions. These conditions are based on the happened-before order of operations, intuitively express the LIFO semantics and can be proved by simple arguments. Designers of concurrent data structures can easily and quickly learn to use the proof technique. We have successfully applied the method to several challenging concurrent stacks: the TS stack, the HSY stack, and the FA stack, etc.

Compared with visual signals, Inertial Measurement Units (IMUs) placed on human limbs can capture accurate motion signals while being robust to lighting variation and occlusion. While these characteristics are intuitively valuable to help egocentric action recognition, the potential of IMUs remains under-explored. In this work, we present a novel method for action recognition that integrates motion data from body-worn IMUs with egocentric video. Due to the scarcity of labeled multimodal data, we design an MAE-based self-supervised pretraining method, obtaining strong multi-modal representations via modeling the natural correlation between visual and motion signals. To model the complex relation of multiple IMU devices placed across the body, we exploit the collaborative dynamics in multiple IMU devices and propose to embed the relative motion features of human joints into a graph structure. Experiments show our method can achieve state-of-the-art performance on multiple public datasets. The effectiveness of our MAE-based pretraining and graph-based IMU modeling are further validated by experiments in more challenging scenarios, including partially missing IMU devices and video quality corruption, promoting more flexible usages in the real world.

Explainable Artificial Intelligence (XAI) aims to uncover the decision-making processes of AI models. However, the data used for such explanations can pose security and privacy risks. Existing literature identifies attacks on machine learning models, including membership inference, model inversion, and model extraction attacks. These attacks target either the model or the training data, depending on the settings and parties involved. XAI tools can increase the vulnerability of model extraction attacks, which is a concern when model owners prefer black-box access, thereby keeping model parameters and architecture private. To exploit this risk, we propose AUTOLYCUS, a novel retraining (learning) based model extraction attack framework against interpretable models under black-box settings. As XAI tools, we exploit Local Interpretable Model-Agnostic Explanations (LIME) and Shapley values (SHAP) to infer decision boundaries and create surrogate models that replicate the functionality of the target model. LIME and SHAP are mainly chosen for their realistic yet information-rich explanations, coupled with their extensive adoption, simplicity, and usability. We evaluate AUTOLYCUS on six machine learning datasets, measuring the accuracy and similarity of the surrogate model to the target model. The results show that AUTOLYCUS is highly effective, requiring significantly fewer queries compared to state-of-the-art attacks, while maintaining comparable accuracy and similarity. We validate its performance and transferability on multiple interpretable ML models, including decision trees, logistic regression, naive bayes, and k-nearest neighbor. Additionally, we show the resilience of AUTOLYCUS against proposed countermeasures.

We address the challenge of online convex optimization where the objective function's gradient exhibits sparsity, indicating that only a small number of dimensions possess non-zero gradients. Our aim is to leverage this sparsity to obtain useful estimates of the objective function's gradient even when the only information available is a limited number of function samples. Our motivation stems from distributed queueing systems like microservices-based applications, characterized by request-response workloads. Here, each request type proceeds through a sequence of microservices to produce a response, and the resource allocation across the collection of microservices is controlled to balance end-to-end latency with resource costs. While the number of microservices is substantial, the latency function primarily reacts to resource changes in a few, rendering the gradient sparse. Our proposed method, CONGO (Compressive Online Gradient Optimization), combines simultaneous perturbation with compressive sensing to estimate gradients. We establish analytical bounds on the requisite number of compressive sensing samples per iteration to maintain bounded bias of gradient estimates, ensuring sub-linear regret. By exploiting sparsity, we reduce the samples required per iteration to match the gradient's sparsity, rather than the problem's original dimensionality. Numerical experiments and real-world microservices benchmarks demonstrate CONGO's superiority over multiple stochastic gradient descent approaches, as it quickly converges to performance comparable to policies pre-trained with workload awareness.

Bayesian optimization (BO) is an efficient framework for optimization of black-box objectives when function evaluations are costly and gradient information is not easily accessible. BO has been successfully applied to automate the task of hyperparameter optimization (HPO) in machine learning (ML) models with the primary objective of optimizing predictive performance on held-out data. In recent years, however, with ever-growing model sizes, the energy cost associated with model training has become an important factor for ML applications. Here we evaluate Constrained Bayesian Optimization (CBO) with the primary objective of minimizing energy consumption and subject to the constraint that the generalization performance is above some threshold. We evaluate our approach on regression and classification tasks and demonstrate that CBO achieves lower energy consumption without compromising the predictive performance of ML models.

Recently, diffusion models have increasingly demonstrated their capabilities in vision understanding. By leveraging prompt-based learning to construct sentences, these models have shown proficiency in classification and visual grounding tasks. However, existing approaches primarily showcase their ability to perform sentence-level localization, leaving the potential for leveraging contextual information for phrase-level understanding largely unexplored. In this paper, we utilize Panoptic Narrative Grounding (PNG) as a proxy task to investigate this capability further. PNG aims to segment object instances mentioned by multiple noun phrases within a given narrative text. Specifically, we introduce the DiffPNG framework, a straightforward yet effective approach that fully capitalizes on the diffusion's architecture for segmentation by decomposing the process into a sequence of localization, segmentation, and refinement steps. The framework initially identifies anchor points using cross-attention mechanisms and subsequently performs segmentation with self-attention to achieve zero-shot PNG. Moreover, we introduce a refinement module based on SAM to enhance the quality of the segmentation masks. Our extensive experiments on the PNG dataset demonstrate that DiffPNG achieves strong performance in the zero-shot PNG task setting, conclusively proving the diffusion model's capability for context-aware, phrase-level understanding. Source code is available at \url{//github.com/nini0919/DiffPNG}.

Network monitoring is essential to collect compre-hensive data on signal quality in optical networks. As deploying large amounts of monitoring equipment results in elevated cost and power consumption, novel low-cost monitoring methods are continuously being investigated. A new technique called Power Profile Monitoring (PPM) has recently gained traction thanks to its ability to monitor an entire lightpath using a single post-processing unit at the lightpath receiver. PPM does not require to deploy an individual monitor for each span, as in the traditional monitoring technique using Optical Time-Domain Reflectometer (OTDR). PPM and OTDR have different monitoring applications, which will be elaborated in our discussion, hence they can be considered either alternative or complementary techniques according to the targeted monitoring capabilities to be implemented in the network. In this work, we aim to quantify the cost and power consumption of PPM (using OTDR as a baseline reference), as this analysis can provide guidelines for the implementation and deployment of PPM. First, we discuss how PPM and OTDR monitors are deployed, and we formally state a new Optimized Monitoring Placement (OMP) problem for PPM. Solving the OMP problem allows to identify the minimum number of PPM monitors that guarantees that all links in the networks are monitored by at least n PPM monitors (note that using n > 1 allows for increased monitoring accuracy). We prove the NP-hardness of the OMP problem and formulate it using an Integer Linear Programming (ILP) model. Finally, we also devise a heuristic algorithm for the OMP problem to scale to larger topologies. Our numerical results, obtained on realistic topologies, suggest that the cost (power) of one PPM module should be lower than 2.6 times and 10.2 times that of one OTDR for nation-wide and continental-wide topology, respectively.

Retrieval-augmented Large Language Models (LLMs) have reshaped traditional query-answering systems, offering unparalleled user experiences. However, existing retrieval techniques often struggle to handle multi-modal query contexts. In this paper, we present an interactive Multi-modal Query Answering (MQA) system, empowered by our newly developed multi-modal retrieval framework and navigation graph index, integrated with cutting-edge LLMs. It comprises five core components: Data Preprocessing, Vector Representation, Index Construction, Query Execution, and Answer Generation, all orchestrated by a dedicated coordinator to ensure smooth data flow from input to answer generation. One notable aspect of MQA is its utilization of contrastive learning to assess the significance of different modalities, facilitating precise measurement of multi-modal information similarity. Furthermore, the system achieves efficient retrieval through our advanced navigation graph index, refined using computational pruning techniques. Another highlight of our system is its pluggable processing framework, allowing seamless integration of embedding models, graph indexes, and LLMs. This flexibility provides users diverse options for gaining insights from their multi-modal knowledge base. A preliminary video introduction of MQA is available at //youtu.be/xvUuo2ZIqWk.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

北京阿比特科技有限公司