亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a new policy gradient method, named homotopic policy mirror descent (HPMD), for solving discounted, infinite horizon MDPs with finite state and action spaces. HPMD performs a mirror descent type policy update with an additional diminishing regularization term, and possesses several computational properties that seem to be new in the literature. We first establish the global linear convergence of HPMD instantiated with Kullback-Leibler divergence, for both the optimality gap, and a weighted distance to the set of optimal policies. Then local superlinear convergence is obtained for both quantities without any assumption. With local acceleration and diminishing regularization, we establish the first result among policy gradient methods on certifying and characterizing the limiting policy, by showing, with a non-asymptotic characterization, that the last-iterate policy converges to the unique optimal policy with the maximal entropy. We then extend all the aforementioned results to HPMD instantiated with a broad class of decomposable Bregman divergences, demonstrating the generality of the these computational properties. As a by product, we discover the finite-time exact convergence for some commonly used Bregman divergences, implying the continuing convergence of HPMD to the limiting policy even if the current policy is already optimal. Finally, we develop a stochastic version of HPMD and establish similar convergence properties. By exploiting the local acceleration, we show that for small optimality gap, a better than $\tilde{\mathcal{O}}(\left|\mathcal{S}\right| \left|\mathcal{A}\right| / \epsilon^2)$ sample complexity holds with high probability, when assuming a generative model for policy evaluation.

相關內容

To date, no "information-theoretic" frameworks for reasoning about generalization error have been shown to establish minimax rates for gradient descent in the setting of stochastic convex optimization. In this work, we consider the prospect of establishing such rates via several existing information-theoretic frameworks: input-output mutual information bounds, conditional mutual information bounds and variants, PAC-Bayes bounds, and recent conditional variants thereof. We prove that none of these bounds are able to establish minimax rates. We then consider a common tactic employed in studying gradient methods, whereby the final iterate is corrupted by Gaussian noise, producing a noisy "surrogate" algorithm. We prove that minimax rates cannot be established via the analysis of such surrogates. Our results suggest that new ideas are required to analyze gradient descent using information-theoretic techniques.

Modern policy optimization methods in applied reinforcement learning are often inspired by the trust region policy optimization algorithm, which can be interpreted as a particular instance of policy mirror descent. While theoretical guarantees have been established for this framework, particularly in the tabular setting, the use of a general parametrization scheme remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parametrizations. The policy class induced by our scheme recovers known classes, e.g. tabular softmax, log-linear, and neural policies. It also generates new ones, depending on the choice of the mirror map. For a general mirror map and parametrization function, we establish the quasi-monotonicity of the updates in value function, global linear convergence rates, and we bound the total variation of the algorithm along its path. To showcase the ability of our framework to accommodate general parametrization schemes, we present a case study involving shallow neural networks.

We investigate properties of neural networks that use both ReLU and $x^2$ as activation functions and build upon previous results to show that both analytic functions and functions in Sobolev spaces can be approximated by such networks of constant depth to arbitrary accuracy, demonstrating optimal order approximation rates across all nonlinear approximators, including standard ReLU networks. We then show how to leverage low local dimensionality in some contexts to overcome the curse of dimensionality, obtaining approximation rates that are optimal for unknown lower-dimensional subspaces.

We study reinforcement learning with linear function approximation and adversarially changing cost functions, a setup that has mostly been considered under simplifying assumptions such as full information feedback or exploratory conditions.We present a computationally efficient policy optimization algorithm for the challenging general setting of unknown dynamics and bandit feedback, featuring a combination of mirror-descent and least squares policy evaluation in an auxiliary MDP used to compute exploration bonuses.Our algorithm obtains an $\widetilde O(K^{6/7})$ regret bound, improving significantly over previous state-of-the-art of $\widetilde O (K^{14/15})$ in this setting. In addition, we present a version of the same algorithm under the assumption a simulator of the environment is available to the learner (but otherwise no exploratory assumptions are made), and prove it obtains state-of-the-art regret of $\widetilde O (K^{2/3})$.

Learning decompositions of expensive-to-evaluate black-box functions promises to scale Bayesian optimisation (BO) to high-dimensional problems. However, the success of these techniques depends on finding proper decompositions that accurately represent the black-box. While previous works learn those decompositions based on data, we investigate data-independent decomposition sampling rules in this paper. We find that data-driven learners of decompositions can be easily misled towards local decompositions that do not hold globally across the search space. Then, we formally show that a random tree-based decomposition sampler exhibits favourable theoretical guarantees that effectively trade off maximal information gain and functional mismatch between the actual black-box and its surrogate as provided by the decomposition. Those results motivate the development of the random decomposition upper-confidence bound algorithm (RDUCB) that is straightforward to implement - (almost) plug-and-play - and, surprisingly, yields significant empirical gains compared to the previous state-of-the-art on a comprehensive set of benchmarks. We also confirm the plug-and-play nature of our modelling component by integrating our method with HEBO, showing improved practical gains in the highest dimensional tasks from Bayesmark.

In this work, we develop an online adaptive enrichment method within the framework of the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for solving the linear heterogeneous poroelasticity models with coefficients of high contrast. The proposed method makes use of information of residual-driven error indicators to enrich the multiscale spaces for both the displacement and the pressure variables in the model. Additional online basis functions are constructed in oversampled regions accordingly and are adaptively chosen to reduce the error the most. A complete theoretical analysis of the online enrichment algorithm is provided and justified by thorough numerical experiments.

In this paper, we present a unified and general framework for analyzing the batch updating approach to nonlinear, high-dimensional optimization. The framework encompasses all the currently used batch updating approaches, and is applicable to nonconvex as well as convex functions. Moreover, the framework permits the use of noise-corrupted gradients, as well as first-order approximations to the gradient (sometimes referred to as "gradient-free" approaches). By viewing the analysis of the iterations as a problem in the convergence of stochastic processes, we are able to establish a very general theorem, which includes most known convergence results for zeroth-order and first-order methods. The analysis of "second-order" or momentum-based methods is not a part of this paper, and will be studied elsewhere. However, numerical experiments indicate that momentum-based methods can fail if the true gradient is replaced by its first-order approximation. This requires further theoretical analysis.

Recently, remarkable progress has been made by approximating Nash equilibrium (NE), correlated equilibrium (CE), and coarse correlated equilibrium (CCE) through function approximation that trains a neural network to predict equilibria from game representations. Furthermore, equivariant architectures are widely adopted in designing such equilibrium approximators in normal-form games. In this paper, we theoretically characterize benefits and limitations of equivariant equilibrium approximators. For the benefits, we show that they enjoy better generalizability than general ones and can achieve better approximations when the payoff distribution is permutation-invariant. For the limitations, we discuss their drawbacks in terms of equilibrium selection and social welfare. Together, our results help to understand the role of equivariance in equilibrium approximators.

Bounded model checking (BMC) is an effective technique for hunting bugs by incrementally exploring the state space of a system. To reason about infinite traces through a finite structure and to ultimately obtain completeness, BMC incorporates loop conditions that revisit previously observed states. This paper focuses on developing loop conditions for BMC of HyperLTL- a temporal logic for hyperproperties that allows expressing important policies for security and consistency in concurrent systems, etc. Loop conditions for HyperLTL are more complicated than for LTL, as different traces may loop inconsistently in unrelated moments. Existing BMC approaches for HyperLTL only considered linear unrollings without any looping capability, which precludes both finding small infinite traces and obtaining a complete technique. We investigate loop conditions for HyperLTL BMC, where the HyperLTL formula can contain up to one quantifier alternation. We first present a general complete automata-based technique which is based on bounds of maximum unrollings. Then, we introduce alternative simulation-based algorithms that allow exploiting short loops effectively, generating SAT queries whose satisfiability guarantees the outcome of the original model checking problem. We also report empirical evaluation of the prototype implementation of our BMC techniques using Z3py.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司