亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern policy optimization methods in applied reinforcement learning are often inspired by the trust region policy optimization algorithm, which can be interpreted as a particular instance of policy mirror descent. While theoretical guarantees have been established for this framework, particularly in the tabular setting, the use of a general parametrization scheme remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parametrizations. The policy class induced by our scheme recovers known classes, e.g. tabular softmax, log-linear, and neural policies. It also generates new ones, depending on the choice of the mirror map. For a general mirror map and parametrization function, we establish the quasi-monotonicity of the updates in value function, global linear convergence rates, and we bound the total variation of the algorithm along its path. To showcase the ability of our framework to accommodate general parametrization schemes, we present a case study involving shallow neural networks.

相關內容

We analyze stochastic gradient descent (SGD) type algorithms on a high-dimensional sphere which is parameterized by a neural network up to a normalization constant. We provide a new algorithm for the setting of supervised learning and show its convergence both theoretically and numerically. We also provide the first proof of convergence for the unsupervised setting, which corresponds to the widely used variational Monte Carlo (VMC) method in quantum physics.

Explicit exploration in the action space was assumed to be indispensable for online policy gradient methods to avoid a drastic degradation in sample complexity, for solving general reinforcement learning problems over finite state and action spaces. In this paper, we establish for the first time an $\tilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity for online policy gradient methods without incorporating any exploration strategies. The essential development consists of two new on-policy evaluation operators and a novel analysis of the stochastic policy mirror descent method (SPMD). SPMD with the first evaluation operator, called value-based estimation, tailors to the Kullback-Leibler divergence. Provided the Markov chains on the state space of generated policies are uniformly mixing with non-diminishing minimal visitation measure, an $\tilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity is obtained with a linear dependence on the size of the action space. SPMD with the second evaluation operator, namely truncated on-policy Monte Carlo (TOMC), attains an $\tilde{\mathcal{O}}(\mathcal{H}_{\mathcal{D}}/\epsilon^2)$ sample complexity, where $\mathcal{H}_{\mathcal{D}}$ mildly depends on the effective horizon and the size of the action space with properly chosen Bregman divergence (e.g., Tsallis divergence). SPMD with TOMC also exhibits stronger convergence properties in that it controls the optimality gap with high probability rather than in expectation. In contrast to explicit exploration, these new policy gradient methods can prevent repeatedly committing to potentially high-risk actions when searching for optimal policies.

Multi-agent interactions are increasingly important in the context of reinforcement learning, and the theoretical foundations of policy gradient methods have attracted surging research interest. We investigate the global convergence of natural policy gradient (NPG) algorithms in multi-agent learning. We first show that vanilla NPG may not have parameter convergence, i.e., the convergence of the vector that parameterizes the policy, even when the costs are regularized (which enabled strong convergence guarantees in the policy space in the literature). This non-convergence of parameters leads to stability issues in learning, which becomes especially relevant in the function approximation setting, where we can only operate on low-dimensional parameters, instead of the high-dimensional policy. We then propose variants of the NPG algorithm, for several standard multi-agent learning scenarios: two-player zero-sum matrix and Markov games, and multi-player monotone games, with global last-iterate parameter convergence guarantees. We also generalize the results to certain function approximation settings. Note that in our algorithms, the agents take symmetric roles. Our results might also be of independent interest for solving nonconvex-nonconcave minimax optimization problems with certain structures. Simulations are also provided to corroborate our theoretical findings.

The presence of measurement error is a widespread issue which, when ignored, can render the results of an analysis unreliable. Numerous corrections for the effects of measurement error have been proposed and studied, often under the assumption of a normally distributed, additive measurement error model. One such method is simulation extrapolation, or SIMEX. In many situations observed data are non-symmetric, heavy-tailed, or otherwise highly non-normal. In these settings, correction techniques relying on the assumption of normality are undesirable. We propose an extension to the simulation extrapolation method which is nonparametric in the sense that no specific distributional assumptions are required on the error terms. The technique is implemented when either validation data or replicate measurements are available, and is designed to be immediately accessible for those familiar with simulation extrapolation.

Finding meaningful ways to measure the statistical dependency between random variables $\xi$ and $\zeta$ is a timeless statistical endeavor. In recent years, several novel concepts, like the distance covariance, have extended classical notions of dependency to more general settings. In this article, we propose and study an alternative framework that is based on optimal transport. The transport dependency $\tau \ge 0$ applies to general Polish spaces and intrinsically respects metric properties. For suitable ground costs, independence is fully characterized by $\tau = 0$. Via proper normalization of $\tau$, three transport correlations $\rho_\alpha$, $\rho_\infty$, and $\rho_*$ with values in $[0, 1]$ are defined. They attain the value $1$ if and only if $\zeta = \varphi(\xi)$, where $\varphi$ is an $\alpha$-Lipschitz function for $\rho_\alpha$, a measurable function for $\rho_\infty$, or a multiple of an isometry for $\rho_*$. The transport dependency can be estimated consistently by an empirical plug-in approach, but alternative estimators with the same convergence rate but significantly reduced computational costs are also proposed. Numerical results suggest that $\tau$ robustly recovers dependency between data sets with different internal metric structures. The usage for inferential tasks, like transport dependency based independence testing, is illustrated on a data set from a cancer study.

A class of implicit Milstein type methods is introduced and analyzed in the present article for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. By incorporating a pair of method parameters $\theta, \eta \in [0, 1]$ into both the drift and diffusion parts, the new schemes are indeed a kind of drift-diffusion double implicit methods. Within a general framework, we offer upper mean-square error bounds for the proposed schemes, based on certain error terms only getting involved with the exact solution processes. Such error bounds help us to easily analyze mean-square convergence rates of the schemes, without relying on a priori high-order moment estimates of numerical approximations. Putting further globally polynomial growth condition, we successfully recover the expected mean-square convergence rate of order one for the considered schemes with $\theta \in [\tfrac12, 1], \eta \in [0, 1]$. Also, some of the proposed schemes are applied to solve three SDE models evolving in the positive domain $(0, \infty)$. More specifically, the particular drift-diffusion implicit Milstein method ($ \theta = \eta = 1 $) is utilized to approximate the Heston $\tfrac32$-volatility model and the stochastic Lotka-Volterra competition model. The semi-implicit Milstein method ($\theta =1, \eta = 0$) is used to solve the Ait-Sahalia interest rate model. Thanks to the previously obtained error bounds, we reveal the optimal mean-square convergence rate of the positivity preserving schemes under more relaxed conditions, compared with existing relevant results in the literature. Numerical examples are also reported to confirm the previous findings.

In this paper we prove convergence rates for time discretisation schemes for semi-linear stochastic evolution equations with additive or multiplicative Gaussian noise, where the leading operator $A$ is the generator of a strongly continuous semigroup $S$ on a Hilbert space $X$, and the focus is on non-parabolic problems. The main results are optimal bounds for the uniform strong error $$\mathrm{E}_{k}^{\infty} := \Big(\mathbb{E} \sup_{j\in \{0, \ldots, N_k\}} \|U(t_j) - U^j\|^p\Big)^{1/p},$$ where $p \in [2,\infty)$, $U$ is the mild solution, $U^j$ is obtained from a time discretisation scheme, $k$ is the step size, and $N_k = T/k$. The usual schemes such as splitting/exponential Euler, implicit Euler, and Crank-Nicolson, etc.\ are included as special cases. Under conditions on the nonlinearity and the noise we show - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (linear equation, additive noise, general $S$); - $\mathrm{E}_{k}^{\infty}\lesssim \sqrt{k} \log(T/k)$ (nonlinear equation, multiplicative noise, contractive $S$); - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (nonlinear wave equation, multiplicative noise). The logarithmic factor can be removed if the splitting scheme is used with a (quasi)-contractive $S$. The obtained bounds coincide with the optimal bounds for SDEs. Most of the existing literature is concerned with bounds for the simpler pointwise strong error $$\mathrm{E}_k:=\bigg(\sup_{j\in \{0,\ldots,N_k\}}\mathbb{E} \|U(t_j) - U^{j}\|^p\bigg)^{1/p}.$$ Applications to Maxwell equations, Schr\"odinger equations, and wave equations are included. For these equations our results improve and reprove several existing results with a unified method.

Reaching disability limits an individual's ability in performing daily tasks. Surface Functional Electrical Stimulation (FES) offers a non-invasive solution to restore the lost abilities. However, inducing desired movements using FES is still an open engineering problem. This problem is accentuated by the complexities of human arms' neuromechanics and the variations across individuals. Reinforcement Learning (RL) emerges as a promising approach to govern customised control rules for different subjects and settings. Yet, one remaining challenge of using RL to control FES is unobservable muscle fatigue that progressively changes as an unknown function of the stimulation, breaking the Markovian assumption of RL. In this work, we present a method to address the unobservable muscle fatigue issue, allowing our RL controller to achieve higher control performances. Our method is based on a Gaussian State-Space Model (GSSM) that utilizes recurrent neural networks to learn Markovian state-spaces from partial observations. The GSSM is used as a filter that converts the observations into the state-space representation for RL to preserve the Markovian assumption. Here, we start with presenting the modification of the original GSSM to address an overconfident issue. We then present the interaction between RL and the modified GSSM, followed by the setup for FES control learning. We test our RL-GSSM system on a planar reaching setting in simulation using a detailed neuromechanical model and show that the GSSM can help RL maintain its control performance against the fatigue.

Graph Neural Networks (GNNs) are de facto solutions to structural data learning. However, it is susceptible to low-quality and unreliable structure, which has been a norm rather than an exception in real-world graphs. Existing graph structure learning (GSL) frameworks still lack robustness and interpretability. This paper proposes a general GSL framework, SE-GSL, through structural entropy and the graph hierarchy abstracted in the encoding tree. Particularly, we exploit the one-dimensional structural entropy to maximize embedded information content when auxiliary neighbourhood attributes are fused to enhance the original graph. A new scheme of constructing optimal encoding trees is proposed to minimize the uncertainty and noises in the graph whilst assuring proper community partition in hierarchical abstraction. We present a novel sample-based mechanism for restoring the graph structure via node structural entropy distribution. It increases the connectivity among nodes with larger uncertainty in lower-level communities. SE-GSL is compatible with various GNN models and enhances the robustness towards noisy and heterophily structures. Extensive experiments show significant improvements in the effectiveness and robustness of structure learning and node representation learning.

"As many of us know from bitter experience, the policies provided in extant operating systems, which are claimed to work well and behave fairly 'on the average', often fail to do so in the special cases important to us" [Wulf et al. 1974]. Written in 1974, these words motivated moving policy decisions into user-space. Today, as warehouse-scale computers (WSCs) have become ubiquitous, it is time to move policy decisions away from individual servers altogether. Built-in policies are complex and often exhibit bad performance at scale. Meanwhile, the highly-controlled WSC setting presents opportunities to improve performance and predictability. We propose moving all policy decisions from the OS kernel to the cluster manager (CM), in a new paradigm we call Grape CM. In this design, the role of the kernel is reduced to monitoring, sending metrics to the CM, and executing policy decisions made by the CM. The CM uses metrics from all kernels across the WSC to make informed policy choices, sending commands back to each kernel in the cluster. We claim that Grape CM will improve performance, transparency, and simplicity. Our initial experiments show how the CM can identify the optimal set of huge pages for any workload or improve memcached latency by 15%.

北京阿比特科技有限公司