亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

"As many of us know from bitter experience, the policies provided in extant operating systems, which are claimed to work well and behave fairly 'on the average', often fail to do so in the special cases important to us" [Wulf et al. 1974]. Written in 1974, these words motivated moving policy decisions into user-space. Today, as warehouse-scale computers (WSCs) have become ubiquitous, it is time to move policy decisions away from individual servers altogether. Built-in policies are complex and often exhibit bad performance at scale. Meanwhile, the highly-controlled WSC setting presents opportunities to improve performance and predictability. We propose moving all policy decisions from the OS kernel to the cluster manager (CM), in a new paradigm we call Grape CM. In this design, the role of the kernel is reduced to monitoring, sending metrics to the CM, and executing policy decisions made by the CM. The CM uses metrics from all kernels across the WSC to make informed policy choices, sending commands back to each kernel in the cluster. We claim that Grape CM will improve performance, transparency, and simplicity. Our initial experiments show how the CM can identify the optimal set of huge pages for any workload or improve memcached latency by 15%.

相關內容

Since the inception of human research studies, researchers often need to interact with participants on a set schedule to collect data. While some human research is automated, most is not; which costs researchers both time and money. Usually, user-provided data collection consists of surveys administered via telephone or email. While these methods are simplest, they are tedious for the survey administrators, which could incur fatigue and potentially lead to collection mistakes. A solution to this was the creation of "chatbots". Early developments relied on mostly rule-based tactics (e.g. ELIZA), which were suitable for uniform input. However, as the complexity of interactions increases, rule-based systems begin breaking down since there exist a variety of ways for a user to express the same intention. This is especially true when tracking states within a research study (or protocol). Recently, natural language processing (NLP) models and, subsequently, virtual assistants have become increasingly more sophisticated when communicating with users. Examples of these efforts range from research studies to commercial health products. This project leverages recent advancements in conversational artificial intelligence (AI), speech-to-text, natural language understanding (NLU), and finite-state machines to automate protocols, specifically in research settings. This application must be generalized, fully customizable, and irrespective of any research study. These parameters allow new research protocols to be created quickly once envisioned. With this in mind, I present SmartState, a fully-customizable, state-driven protocol manager combined with supporting AI components to autonomously manage user data and intelligently determine the intention of users through chat and end device interactions to drive protocols.

The exploration problem is one of the main challenges in deep reinforcement learning (RL). Recent promising works tried to handle the problem with population-based methods, which collect samples with diverse behaviors derived from a population of different exploratory policies. Adaptive policy selection has been adopted for behavior control. However, the behavior selection space is largely limited by the predefined policy population, which further limits behavior diversity. In this paper, we propose a general framework called Learnable Behavioral Control (LBC) to address the limitation, which a) enables a significantly enlarged behavior selection space via formulating a hybrid behavior mapping from all policies; b) constructs a unified learnable process for behavior selection. We introduce LBC into distributed off-policy actor-critic methods and achieve behavior control via optimizing the selection of the behavior mappings with bandit-based meta-controllers. Our agents have achieved 10077.52% mean human normalized score and surpassed 24 human world records within 1B training frames in the Arcade Learning Environment, which demonstrates our significant state-of-the-art (SOTA) performance without degrading the sample efficiency.

The Reverse Transcription Polymerase Chain Reaction (RTPCR)} test is the silver bullet diagnostic test to discern COVID infection. Rapid antigen detection is a screening test to identify COVID positive patients in little as 15 minutes, but has a lower sensitivity than the PCR tests. Besides having multiple standardized test kits, many people are getting infected and either recovering or dying even before the test due to the shortage and cost of kits, lack of indispensable specialists and labs, time-consuming result compared to bulk population especially in developing and underdeveloped countries. Intrigued by the parametric deviations in immunological and hematological profile of a COVID patient, this research work leveraged the concept of COVID-19 detection by proposing a risk-free and highly accurate Stacked Ensemble Machine Learning model to identify a COVID patient from communally available-widespread-cheap routine blood tests which gives a promising accuracy, precision, recall and F1-score of 100%. Analysis from R-curve also shows the preciseness of the risk-free model to be implemented. The proposed method has the potential for large scale ubiquitous low-cost screening application. This can add an extra layer of protection in keeping the number of infected cases to a minimum and control the pandemic by identifying asymptomatic or pre-symptomatic people early.

Being on a mushrooming spree since at least 2013, malware can take a large toll on any system. In a perpetual cat-and-mouse chase with defenders, malware writers constantly conjure new methods to hide their code so as to evade detection by security products. In this context, focusing on the MS Windows platform, this work contributes a comprehensive empirical evaluation regarding the detection capacity of popular, off-the-shelf antivirus and endpoint detection and response engines when facing legacy malware obfuscated via more or less uncommon but publicly known methods. Our experiments exploit a blend of seven traditional AV evasion techniques in 16 executables built in C++, Go, and Rust. Furthermore, we conduct an incipient study regarding the ability of the ChatGPT chatbot in assisting threat actors to produce ready-to-use malware. The derived results in terms of detection rate are highly unexpected: approximately half of the 12 tested AV engines were able to detect less than half of the malware variants, four AVs exactly half of the variants, while only two of the rest detected all but one of the variants.

Pre-trained transformers are popular in state-of-the-art dialogue generation (DG) systems. Such language models are, however, vulnerable to various adversarial samples as studied in traditional tasks such as text classification, which inspires our curiosity about their robustness in DG systems. One main challenge of attacking DG models is that perturbations on the current sentence can hardly degrade the response accuracy because the unchanged chat histories are also considered for decision-making. Instead of merely pursuing pitfalls of performance metrics such as BLEU, ROUGE, we observe that crafting adversarial samples to force longer generation outputs benefits attack effectiveness -- the generated responses are typically irrelevant, lengthy, and repetitive. To this end, we propose a white-box multi-objective attack method called DGSlow. Specifically, DGSlow balances two objectives -- generation accuracy and length, via a gradient-based multi-objective optimizer and applies an adaptive searching mechanism to iteratively craft adversarial samples with only a few modifications. Comprehensive experiments on four benchmark datasets demonstrate that DGSlow could significantly degrade state-of-the-art DG models with a higher success rate than traditional accuracy-based methods. Besides, our crafted sentences also exhibit strong transferability in attacking other models.

Bluetooth Low Energy (BLE) has become the primary transmission media due to its extremely low energy consumption, good network scope, and data transfer speed for the Internet of Things (IoT) and smart wearable devices. With the exponential boom of the Internet of Things (IoT) and the Bluetooth Low Energy (BLE) connection protocol, a requirement to discover defensive techniques to protect it with practical security analysis. Unfortunately, IoT-BLE is at risk of spoofing assaults where an attacker can pose as a gadget and provide its users a harmful information. Furthermore, due to the simplified strategy of this protocol, there were many security and privacy vulnerabilities. Justifying this quantitative security analysis with STRIDE Methodology change to create a framework to deal with protection issues for the IoT-BLE sensors. Therefore, providing probable attack scenarios for various exposures in this analysis, and offer mitigating strategies. In light of this authors performed STRIDE threat modeling to understand the attack surface for smart wearable devices supporting BLE. The study evaluates different exploitation scenarios Denial of Service (DoS), Elevation of privilege, Information disclosure, spoofing, Tampering, and repudiation on MI Band, One plus Band, Boat Storm smartwatch, and Fire Bolt Invincible.

Achieving resource efficiency while preserving end-user experience is non-trivial for cloud application operators. As cloud applications progressively adopt microservices, resource managers are faced with two distinct levels of system behavior: the end-to-end application latency and per-service resource usage. Translation between these two levels, however, is challenging because user requests traverse heterogeneous services that collectively (but unevenly) contribute to the end-to-end latency. This paper presents Autothrottle, a bi-level learning-assisted resource management framework for SLO-targeted microservices. It architecturally decouples mechanisms of application SLO feedback and service resource control, and bridges them with the notion of performance targets. This decoupling enables targeted control policies for these two mechanisms, where we combine lightweight heuristics and learning techniques. We evaluate Autothrottle on three microservice applications, with workload traces from production scenarios. Results show its superior CPU resource saving, up to 26.21% over the best-performing baseline, and up to 93.84% over all baselines.

Training a dialogue policy using deep reinforcement learning requires a lot of exploration of the environment. The amount of wasted invalid exploration makes their learning inefficient. In this paper, we find and define an important reason for the invalid exploration: dead-ends. When a conversation enters a dead-end state, regardless of the actions taken afterward, it will continue in a dead-end trajectory until the agent reaches a termination state or maximum turn. We propose a dead-end resurrection (DDR) algorithm that detects the initial dead-end state in a timely and efficient manner and provides a rescue action to guide and correct the exploration direction. To prevent dialogue policies from repeatedly making the same mistake, DDR also performs dialogue data augmentation by adding relevant experiences containing dead-end states. We first validate the dead-end detection reliability and then demonstrate the effectiveness and generality of the method by reporting experimental results on several dialogue datasets from different domains.

Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.

Deep learning have achieved promising results on a wide spectrum of AI applications. Larger datasets and models consistently yield better performance. However, we generally spend longer training time on more computation and communication. In this survey, we aim to provide a clear sketch about the optimizations for large-scale deep learning with regard to the model accuracy and model efficiency. We investigate algorithms that are most commonly used for optimizing, elaborate the debatable topic of generalization gap arises in large-batch training, and review the SOTA strategies in addressing the communication overhead and reducing the memory footprints.

北京阿比特科技有限公司