亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learned optimizers are a crucial component of meta-learning. Recent advancements in scalable learned optimizers have demonstrated their superior performance over hand-designed optimizers in various tasks. However, certain characteristics of these models, such as an unstable learning curve, limited ability to handle unseen tasks and network architectures, difficult-to-control behaviours, and poor performance in fine-tuning tasks impede their widespread adoption. To tackle the issue of generalization in scalable learned optimizers, we propose a hybrid-update-based (HUB) optimization strategy inspired by recent advancements in hard prompt tuning and result selection techniques used in large language and vision models. This approach can be easily applied to any task that involves hand-designed or learned optimizer. By incorporating hand-designed optimizers as the second component in our hybrid approach, we are able to retain the benefits of learned optimizers while stabilizing the training process and, more importantly, improving testing performance. We validate our design through a total of 17 tasks, consisting of thirteen training from scratch and four fine-tuning settings. These tasks vary in model sizes, architectures, or dataset sizes, and the competing optimizers are hyperparameter-tuned. We outperform all competitors in 94% of the tasks with better testing performance. Furthermore, we conduct a theoretical analysis to examine the potential impact of our hybrid strategy on the behaviours and inherited traits of learned optimizers.

相關內容

With the growing interest in pretrained vision-language models like CLIP, recent research has focused on adapting these models to downstream tasks. Despite achieving promising results, most existing methods require labeled data for all classes, which may not hold in real-world applications due to the long tail and Zipf's law. For example, some classes may lack labeled data entirely, such as emerging concepts. To address this problem, we propose a plug-and-play generative approach called \textbf{S}ynt\textbf{H}es\textbf{I}zed \textbf{P}rompts~(\textbf{SHIP}) to improve existing fine-tuning methods. Specifically, we follow variational autoencoders to introduce a generator that reconstructs the visual features by inputting the synthesized prompts and the corresponding class names to the textual encoder of CLIP. In this manner, we easily obtain the synthesized features for the remaining label-only classes. Thereafter, we fine-tune CLIP with off-the-shelf methods by combining labeled and synthesized features. Extensive experiments on base-to-new generalization, cross-dataset transfer learning, and generalized zero-shot learning demonstrate the superiority of our approach. The code is available at \url{//github.com/mrflogs/SHIP}.

Adapting pretrained language models to novel domains, such as clinical applications, traditionally involves retraining their entire set of parameters. However, this approach is increasingly proven to be impractical owing to the substantial computational requirements associated with training such large language models. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) techniques offer a viable solution by selectively fine-tuning a small subset of additional parameters, significantly reducing the computational requirements for domain adaptation. In this study, we propose Clinical LLaMA-LoRA, a PEFT adapter layer built upon the open-sourced LLaMA model. Clinical LLaMA-LoRA is trained using clinical notes obtained from the MIMIC-IV database, thereby creating a specialised adapter designed for the clinical domain. Additionally, we propose a two-step PEFT framework which fuses Clinical LLaMA-LoRA with Downstream LLaMA-LoRA, another PEFT adapter specialised for downstream tasks. We evaluate this framework on multiple clinical outcome prediction datasets, comparing it to clinically trained language models. Our proposed framework achieves a state-of-the-art AUROC score averaged across all clinical downstream tasks. We observe substantial improvements of 6-9% AUROC score in the large-scale multilabel classification tasks, such as diagnoses and procedures classification.

Sensor devices have been increasingly used in engineering and health studies recently, and the captured multi-dimensional activity and vital sign signals can be studied in association with health outcomes to inform public health. The common approach is the scalar-on-function regression model, in which health outcomes are the scalar responses while high-dimensional sensor signals are the functional covariates, but how to effectively interpret results becomes difficult. In this study, we propose a new Functional Adaptive Double-Sparsity (FadDoS) estimator based on functional regularization of sparse group lasso with multiple functional predictors, which can achieve global sparsity via functional variable selection and local sparsity via zero-subinterval identification within coefficient functions. We prove that the FadDoS estimator converges at a bounded rate and satisfies the oracle property under mild conditions. Extensive simulation studies confirm the theoretical properties and exhibit excellent performances compared to existing approaches. Application to a Kinect sensor study that utilized an advanced motion sensing device tracking human multiple joint movements and conducted among community-dwelling elderly demonstrates how the FadDoS estimator can effectively characterize the detailed association between joint movements and physical health assessments. The proposed method is not only effective in Kinect sensor analysis but also applicable to broader fields, where multi-dimensional sensor signals are collected simultaneously, to expand the use of sensor devices in health studies and facilitate sensor data analysis.

Contrastive language-image Pre-training (CLIP) [13] can leverage large datasets of unlabeled Image-Text pairs, which have demonstrated impressive performance in various downstream tasks. Given that annotating medical data is time-consuming and laborious, Image-Text Pre-training has promising applications in exploiting large-scale medical image and radiology report datasets. However, medical Image-Text Pre-training faces several challenges, as follows: (1) Due to privacy concerns, the amount of available medical data is relatively small compared to natural data, leading to weaker generalization ability of the model. (2) Medical images are highly similar with only fine-grained differences in subtleties, resulting in a large number of false-negative sample pairs in comparison learning. (3) The hand-crafted Prompt usually differs from the natural medical image report, Subtle changes in wording can lead to significant differences in performance. In this paper, we propose a unified Image-Text-Label contrastive learning framework based on continuous prompts, with three main contributions. First, We unified the data of images, text, and labels, which greatly expanded the training data that the model could utilize. Second, we address the issue of data diversity and the impact of hand-crafted prompts on model performance by introducing continuous implicit prompts. Lastly, we propose a ImageText-Label contrastive Training to mitigate the problem of too many false-negative samples. We demonstrate through sufficient experiments that the Unified Medical Contrastive Learning (UMCL) framework exhibits excellent performance on several downstream tasks.

Despite their unprecedented success, even the largest language models make mistakes. Similar to how humans learn and improve using feedback, previous work proposed providing language models with natural language feedback to guide them in repairing their outputs. Because human-generated critiques are expensive to obtain, researchers have devised learned critique generators in lieu of human critics while assuming one can train downstream models to utilize generated feedback. However, this approach does not apply to black-box or limited access models such as ChatGPT, as they cannot be fine-tuned. Moreover, in the era of large general-purpose language agents, fine-tuning is neither computationally nor spatially efficient as it results in multiple copies of the network. In this work, we introduce RL4F (Reinforcement Learning for Feedback), a multi-agent collaborative framework where the critique generator is trained to maximize end-task performance of GPT-3, a fixed model more than 200 times its size. RL4F produces critiques that help GPT-3 revise its outputs. We study three datasets for action planning, summarization and alphabetization and show relative improvements up to 10% in multiple text similarity metrics over other learned, retrieval-augmented or prompting-based critique generators.

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Pre-training text representations has recently been shown to significantly improve the state-of-the-art in many natural language processing tasks. The central goal of pre-training is to learn text representations that are useful for subsequent tasks. However, existing approaches are optimized by minimizing a proxy objective, such as the negative log likelihood of language modeling. In this work, we introduce a learning algorithm which directly optimizes model's ability to learn text representations for effective learning of downstream tasks. We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps. The standard multi-task learning objective adopted in BERT is a special case of our learning algorithm where the depth of meta-train is zero. We study the problem in two settings: unsupervised pre-training and supervised pre-training with different pre-training objects to verify the generality of our approach.Experimental results show that our algorithm brings improvements and learns better initializations for a variety of downstream tasks.

Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

北京阿比特科技有限公司