Sensor devices have been increasingly used in engineering and health studies recently, and the captured multi-dimensional activity and vital sign signals can be studied in association with health outcomes to inform public health. The common approach is the scalar-on-function regression model, in which health outcomes are the scalar responses while high-dimensional sensor signals are the functional covariates, but how to effectively interpret results becomes difficult. In this study, we propose a new Functional Adaptive Double-Sparsity (FadDoS) estimator based on functional regularization of sparse group lasso with multiple functional predictors, which can achieve global sparsity via functional variable selection and local sparsity via zero-subinterval identification within coefficient functions. We prove that the FadDoS estimator converges at a bounded rate and satisfies the oracle property under mild conditions. Extensive simulation studies confirm the theoretical properties and exhibit excellent performances compared to existing approaches. Application to a Kinect sensor study that utilized an advanced motion sensing device tracking human multiple joint movements and conducted among community-dwelling elderly demonstrates how the FadDoS estimator can effectively characterize the detailed association between joint movements and physical health assessments. The proposed method is not only effective in Kinect sensor analysis but also applicable to broader fields, where multi-dimensional sensor signals are collected simultaneously, to expand the use of sensor devices in health studies and facilitate sensor data analysis.
Motion capture from a limited number of inertial measurement units (IMUs) has important applications in health, human performance, and virtual reality. Real-world limitations and application-specific goals dictate different IMU configurations (i.e., number of IMUs and chosen attachment body segments), trading off accuracy and practicality. Although recent works were successful in accurately reconstructing whole-body motion from six IMUs, these systems only work with a specific IMU configuration. Here we propose a single diffusion generative model, Diffusion Inertial Poser (DiffIP), which reconstructs human motion in real-time from arbitrary IMU configurations. We show that DiffIP has the benefit of flexibility with respect to the IMU configuration while being as accurate as the state-of-the-art for the commonly used six IMU configuration. Our system enables selecting an optimal configuration for different applications without retraining the model. For example, when only four IMUs are available, DiffIP found that the configuration that minimizes errors in joint kinematics instruments the thighs and forearms. However, global translation reconstruction is better when instrumenting the feet instead of the thighs. Although our approach is agnostic to the underlying model, we built DiffIP based on physiologically realistic musculoskeletal models to enable use in biomedical research and health applications.
We propose augmenting the empathetic capacities of social robots by integrating non-verbal cues. Our primary contribution is the design and labeling of four types of empathetic non-verbal cues, abbreviated as SAFE: Speech, Action (gesture), Facial expression, and Emotion, in a social robot. These cues are generated using a Large Language Model (LLM). We developed an LLM-based conversational system for the robot and assessed its alignment with social cues as defined by human counselors. Preliminary results show distinct patterns in the robot's responses, such as a preference for calm and positive social emotions like 'joy' and 'lively', and frequent nodding gestures. Despite these tendencies, our approach has led to the development of a social robot capable of context-aware and more authentic interactions. Our work lays the groundwork for future studies on human-robot interactions, emphasizing the essential role of both verbal and non-verbal cues in creating social and empathetic robots.
Sparse-view cone-beam CT (CBCT) reconstruction is an important direction to reduce radiation dose and benefit clinical applications. Previous voxel-based generation methods represent the CT as discrete voxels, resulting in high memory requirements and limited spatial resolution due to the use of 3D decoders. In this paper, we formulate the CT volume as a continuous intensity field and develop a novel DIF-Net to perform high-quality CBCT reconstruction from extremely sparse (fewer than 10) projection views at an ultrafast speed. The intensity field of a CT can be regarded as a continuous function of 3D spatial points. Therefore, the reconstruction can be reformulated as regressing the intensity value of an arbitrary 3D point from given sparse projections. Specifically, for a point, DIF-Net extracts its view-specific features from different 2D projection views. These features are subsequently aggregated by a fusion module for intensity estimation. Notably, thousands of points can be processed in parallel to improve efficiency during training and testing. In practice, we collect a knee CBCT dataset to train and evaluate DIF-Net. Extensive experiments show that our approach can reconstruct CBCT with high image quality and high spatial resolution from extremely sparse views within 1.6 seconds, significantly outperforming state-of-the-art methods. Our code will be available at //github.com/xmed-lab/DIF-Net.
As multi-robot systems continue to advance and become integral to various applications, managing conflicts and ensuring secure access control are critical challenges that need to be addressed. Access control is essential in multi-robot systems to ensure secure and authorized interactions among robots, protect sensitive data, and prevent unauthorized access to resources. This paper presents a novel framework for customizable conflict resolution and attribute-based access control in multi-robot systems for ROS 2 leveraging the Hyperledger Fabric blockchain. We introduce an attribute-based access control (ABAC) Fabric-ROS 2 bridge to enable secure communication and control between users and robots. By defining conflict resolution policies based on task priorities, robot capabilities, and user-defined constraints, our framework offers a flexible way to resolve conflicts. Additionally, it incorporates attribute-based access control, granting access rights based on user and robot attributes. ABAC offers a modular approach to control access compared to existing access control approaches in ROS 2, such as SROS2. Through this framework, multi-robot systems can be managed efficiently, securely, and adaptably, ensuring controlled access to resources and managing conflicts. Our experimental evaluation shows that our framework marginally improves latency and throughput over exiting Fabric and ROS 2 integration solutions. At higher network load, it is the only solution to operate reliably without a diverging transaction commitment latency. We also demonstrate how conflicts arising from simultaneous control or a robot by two users are resolved in real-time and motion distortion is effectively eliminated.
Unsignalized intersections are typically considered as one of the most representative and challenging scenarios for self-driving vehicles. To tackle autonomous driving problems in such scenarios, this paper proposes a curriculum proximal policy optimization (CPPO) framework with stage-decaying clipping. By adjusting the clipping parameter during different stages of training through proximal policy optimization (PPO), the vehicle can first rapidly search for an approximate optimal policy or its neighborhood with a large parameter, and then converges to the optimal policy with a small one. Particularly, the stage-based curriculum learning technology is incorporated into the proposed framework to improve the generalization performance and further accelerate the training process. Moreover, the reward function is specially designed in view of different curriculum settings. A series of comparative experiments are conducted in intersection-crossing scenarios with bi-lane carriageways to verify the effectiveness of the proposed CPPO method. The results show that the proposed approach demonstrates better adaptiveness to different dynamic and complex environments, as well as faster training speed over baseline methods.
The assessment of the well-being of the peripheral auditory nerve system in individuals experiencing hearing impairment is conducted through auditory brainstem response (ABR) testing. Audiologists assess and document the results of the ABR test. They interpret the findings and assign labels to them using reference-based markers like peak latency, waveform morphology, amplitude, and other relevant factors. Inaccurate assessment of ABR tests may lead to incorrect judgments regarding the integrity of the auditory nerve system; therefore, proper Hearing Loss (HL) diagnosis and analysis are essential. To identify and assess ABR automation while decreasing the possibility of human error, machine learning methods, notably deep learning, may be an appropriate option. To address these issues, this study proposed deep-learning models using the transfer-learning (TL) approach to extract features from ABR testing and diagnose HL using support vector machines (SVM). Pre-trained convolutional neural network (CNN) architectures like AlexNet, DenseNet, GoogleNet, InceptionResNetV2, InceptionV3, MobileNetV2, NASNetMobile, ResNet18, ResNet50, ResNet101, ShuffleNet, and SqueezeNet are used to extract features from the collected ABR reported images dataset in the proposed model. It has been decided to use six measures accuracy, precision, recall, geometric mean (GM), standard deviation (SD), and area under the ROC curve to measure the effectiveness of the proposed model. According to experimental findings, the ShuffleNet and ResNet50 models' TL is effective for ABR to diagnose HL using an SVM classifier, with a high accuracy rate of 95% when using the 5-fold cross-validation method.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.