Community Question Answering (CQA) in different domains is growing at a large scale because of the availability of several platforms and huge shareable information among users. With the rapid growth of such online platforms, a massive amount of archived data makes it difficult for moderators to retrieve possible duplicates for a new question and identify and confirm existing question pairs as duplicates at the right time. This problem is even more critical in CQAs corresponding to large software systems like askubuntu where moderators need to be experts to comprehend something as a duplicate. Note that the prime challenge in such CQA platforms is that the moderators are themselves experts and are therefore usually extremely busy with their time being extraordinarily expensive. To facilitate the task of the moderators, in this work, we have tackled two significant issues for the askubuntu CQA platform: (1) retrieval of duplicate questions given a new question and (2) duplicate question confirmation time prediction. In the first task, we focus on retrieving duplicate questions from a question pool for a particular newly posted question. In the second task, we solve a regression problem to rank a pair of questions that could potentially take a long time to get confirmed as duplicates. For duplicate question retrieval, we propose a Siamese neural network based approach by exploiting both text and network-based features, which outperforms several state-of-the-art baseline techniques. Our method outperforms DupPredictor and DUPE by 5% and 7% respectively. For duplicate confirmation time prediction, we have used both the standard machine learning models and neural network along with the text and graph-based features. We obtain Spearman's rank correlation of 0.20 and 0.213 (statistically significant) for text and graph based features respectively.
We show that spatially coupled low-density parity- check (LDPC) codes yield robust performance over changing intersymbol interfere (ISI) channels with optimal and suboptimal detectors. We compare the performance with classical LDPC code design which involves optimizing the degree distribution for a given (known) channel. We demonstrate that these classical schemes, despite working very good when designed for a given channel, can perform poorly if the channel is exchanged. With spatially coupled LDPC codes, however, we get performances close to the symmetric information rates with just a single code, without the need to know the channel and adapt to it at the transmitter. We also investigate threshold saturation with the linear minimum mean square error (LMMSE) detector and show that with spatial coupling its performance can get remarkably close to that of an optimal detector for regular LDPC codes.
With the expanding application of Large Language Models (LLMs) in various domains, it becomes imperative to comprehensively investigate their unforeseen behaviors and consequent outcomes. In this study, we introduce and systematically explore the phenomenon of "glitch tokens", which are anomalous tokens produced by established tokenizers and could potentially compromise the models' quality of response. Specifically, we experiment on seven top popular LLMs utilizing three distinct tokenizers and involving a totally of 182,517 tokens. We present categorizations of the identified glitch tokens and symptoms exhibited by LLMs when interacting with glitch tokens. Based on our observation that glitch tokens tend to cluster in the embedding space, we propose GlitchHunter, a novel iterative clustering-based technique, for efficient glitch token detection. The evaluation shows that our approach notably outperforms three baseline methods on eight open-source LLMs. To the best of our knowledge, we present the first comprehensive study on glitch tokens. Our new detection further provides valuable insights into mitigating tokenization-related errors in LLMs.
Although Reinforcement Learning (RL) algorithms acquire sequential behavioral patterns through interactions with the environment, their effectiveness in noisy and high-dimensional scenarios typically relies on specific structural priors. In this paper, we propose a novel and general Structural Information principles-based framework for effective Decision-Making, namely SIDM, approached from an information-theoretic perspective. This paper presents a specific unsupervised partitioning method that forms vertex communities in the state and action spaces based on their feature similarities. An aggregation function, which utilizes structural entropy as the vertex weight, is devised within each community to obtain its embedding, thereby facilitating hierarchical state and action abstractions. By extracting abstract elements from historical trajectories, a directed, weighted, homogeneous transition graph is constructed. The minimization of this graph's high-dimensional entropy leads to the generation of an optimal encoding tree. An innovative two-layer skill-based learning mechanism is introduced to compute the common path entropy of each state transition as its identified probability, thereby obviating the requirement for expert knowledge. Moreover, SIDM can be flexibly incorporated into various single-agent and multi-agent RL algorithms, enhancing their performance. Finally, extensive evaluations on challenging benchmarks demonstrate that, compared with SOTA baselines, our framework significantly and consistently improves the policy's quality, stability, and efficiency up to 32.70%, 88.26%, and 64.86%, respectively.
Energy efficiency and memory footprint of a convolutional neural network (CNN) implemented on a CNN inference accelerator depend on many factors, including a weight quantization strategy (i.e., data types and bit-widths) and mapping (i.e., placement and scheduling of DNN elementary operations on hardware units of the accelerator). We show that enabling rich mixed quantization schemes during the implementation can open a previously hidden space of mappings that utilize the hardware resources more effectively. CNNs utilizing quantized weights and activations and suitable mappings can significantly improve trade-offs among the accuracy, energy, and memory requirements compared to less carefully optimized CNN implementations. To find, analyze, and exploit these mappings, we: (i) extend a general-purpose state-of-the-art mapping tool (Timeloop) to support mixed quantization, which is not currently available; (ii) propose an efficient multi-objective optimization algorithm to find the most suitable bit-widths and mapping for each DNN layer executed on the accelerator; and (iii) conduct a detailed experimental evaluation to validate the proposed method. On two CNNs (MobileNetV1 and MobileNetV2) and two accelerators (Eyeriss and Simba) we show that for a given quality metric (such as the accuracy on ImageNet), energy savings are up to 37% without any accuracy drop.
We explore machine unlearning (MU) in the domain of large language models (LLMs), referred to as LLM unlearning. This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities, while maintaining the integrity of essential knowledge generation and not affecting causally unrelated information. We envision LLM unlearning becoming a pivotal element in the life-cycle management of LLMs, potentially standing as an essential foundation for developing generative AI that is not only safe, secure, and trustworthy, but also resource-efficient without the need of full retraining. We navigate the unlearning landscape in LLMs from conceptual formulation, methodologies, metrics, and applications. In particular, we highlight the often-overlooked aspects of existing LLM unlearning research, e.g., unlearning scope, data-model interaction, and multifaceted efficacy assessment. We also draw connections between LLM unlearning and related areas such as model editing, influence functions, model explanation, adversarial training, and reinforcement learning. Furthermore, we outline an effective assessment framework for LLM unlearning and explore its applications in copyright and privacy safeguards and sociotechnical harm reduction.
Low-Rank Markov Decision Processes (MDPs) have recently emerged as a promising framework within the domain of reinforcement learning (RL), as they allow for provably approximately correct (PAC) learning guarantees while also incorporating ML algorithms for representation learning. However, current methods for low-rank MDPs are limited in that they only consider finite action spaces, and give vacuous bounds as $|\mathcal{A}| \to \infty$, which greatly limits their applicability. In this work, we study the problem of extending such methods to settings with continuous actions, and explore multiple concrete approaches for performing this extension. As a case study, we consider the seminal FLAMBE algorithm (Agarwal et al., 2020), which is a reward-agnostic method for PAC RL with low-rank MDPs. We show that, without any modifications to the algorithm, we obtain a similar PAC bound when actions are allowed to be continuous. Specifically, when the model for transition functions satisfies a H\"older smoothness condition w.r.t. actions, and either the policy class has a uniformly bounded minimum density or the reward function is also H\"older smooth, we obtain a polynomial PAC bound that depends on the order of smoothness.
In Federated Learning (FL), with parameter aggregated by a central node, the communication overhead is a substantial concern. To circumvent this limitation and alleviate the single point of failure within the FL framework, recent studies have introduced Decentralized Federated Learning (DFL) as a viable alternative. Considering the device heterogeneity, and energy cost associated with parameter aggregation, in this paper, the problem on how to efficiently leverage the limited resources available to enhance the model performance is investigated. Specifically, we formulate a problem that minimizes the loss function of DFL while considering energy and latency constraints. The proposed solution involves optimizing the number of local training rounds across diverse devices with varying resource budgets. To make this problem tractable, we first analyze the convergence of DFL with edge devices with different rounds of local training. The derived convergence bound reveals the impact of the rounds of local training on the model performance. Then, based on the derived bound, the closed-form solutions of rounds of local training in different devices are obtained. Meanwhile, since the solutions require the energy cost of aggregation as low as possible, we modify different graph-based aggregation schemes to solve this energy consumption minimization problem, which can be applied to different communication scenarios. Finally, a DFL framework which jointly considers the optimized rounds of local training and the energy-saving aggregation scheme is proposed. Simulation results show that, the proposed algorithm achieves a better performance than the conventional schemes with fixed rounds of local training, and consumes less energy than other traditional aggregation schemes.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.