In this paper, we study $k$-Way Min-cost Perfect Matching with Delays - the $k$-MPMD problem. This problem considers a metric space with $n$ nodes. Requests arrive at these nodes in an online fashion. The task is to match these requests into sets of exactly $k$, such that the space and time cost of all matched requests are minimized. The notion of the space cost requires a definition of an underlying metric space that gives distances of subsets of $k$ elements. For $k>2$, the task of finding a suitable metric space is at the core of our problem: We show that for some known generalizations to $k=3$ points, such as the $2$-metric and the $D$-metric, there exists no competitive randomized algorithm for the $3$-MPMD problem. The $G$-metrics are defined for 3 points and allows for a competitive algorithm for the $3$-MPMD problem. For $k>3$ points, there exist two generalizations of the $G$-metrics known as $n$- and $K$-metrics. We show that neither the $n$-metrics nor the $K$-metrics can be used for the $k$-MPMD problem. On the positive side, we introduce the $H$-metrics, the first metrics to allow for a solution of the $k$-MPMD problem for all $k$. In order to devise an online algorithm for the $k$-MPMD problem on the $H$-metrics, we embed the $H$-metric into trees with an $O(\log n)$ distortion. Based on this embedding result, we extend the algorithm proposed by Azar et al. (2017) and achieve a competitive ratio of $O(\log n)$ for the $k$-MPMD problem.
We show that the decision problem of determining whether a given (abstract simplicial) $k$-complex has a geometric embedding in $\mathbb R^d$ is complete for the Existential Theory of the Reals for all $d\geq 3$ and $k\in\{d-1,d\}$. This implies that the problem is polynomial time equivalent to determining whether a polynomial equation system has a real solution. Moreover, this implies NP-hardness and constitutes the first hardness results for the algorithmic problem of geometric embedding (abstract simplicial) complexes.
We consider an important generalization of the Steiner tree problem, the \emph{Steiner forest problem}, in the Euclidean plane: the input is a multiset $X \subseteq \mathbb{R}^2$, partitioned into $k$ color classes $C_1, C_2, \ldots, C_k \subseteq X$. The goal is to find a minimum-cost Euclidean graph $G$ such that every color class $C_i$ is connected in $G$. We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to $X$. Each input point $x\in X$ arrives with its color $\textsf{color}(x) \in [k]$, and as usual for dynamic geometric streams, the input points are restricted to the discrete grid $\{0, \ldots, \Delta\}^2$. We design a single-pass streaming algorithm that uses $\mathrm{poly}(k \cdot \log\Delta)$ space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio $\alpha_2$ (currently $1.1547 \le \alpha_2 \le 1.214$). This approximation guarantee matches the state of the art bound for streaming Steiner tree, i.e., when $k=1$. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and has so far not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite approximation requires $\Omega(k)$ bits of space.
We study dynamic algorithms for the problem of maximizing a monotone submodular function over a stream of $n$ insertions and deletions. We show that any algorithm that maintains a $(0.5+\epsilon)$-approximate solution under a cardinality constraint, for any constant $\epsilon>0$, must have an amortized query complexity that is $\mathit{polynomial}$ in $n$. Moreover, a linear amortized query complexity is needed in order to maintain a $0.584$-approximate solution. This is in sharp contrast with recent dynamic algorithms of [LMNF+20, Mon20] that achieve $(0.5-\epsilon)$-approximation with a $\mathsf{poly}\log(n)$ amortized query complexity. On the positive side, when the stream is insertion-only, we present efficient algorithms for the problem under a cardinality constraint and under a matroid constraint with approximation guarantee $1-1/e-\epsilon$ and amortized query complexities $\smash{O(\log (k/\epsilon)/\epsilon^2)}$ and $\smash{k^{\tilde{O}(1/\epsilon^2)}\log n}$, respectively, where $k$ denotes the cardinality parameter or the rank of the matroid.
We provide (high probability) bounds on the condition number of random feature matrices. In particular, we show that if the complexity ratio $\frac{N}{m}$ where $N$ is the number of neurons and $m$ is the number of data samples scales like $\log^{-1}(N)$ or $\log(m)$, then the random feature matrix is well-conditioned. This result holds without the need of regularization and relies on establishing various concentration bounds between dependent components of the random feature matrix. Additionally, we derive bounds on the restricted isometry constant of the random feature matrix. We prove that the risk associated with regression problems using a random feature matrix exhibits the double descent phenomenon and that this is an effect of the double descent behavior of the condition number. The risk bounds include the underparameterized setting using the least squares problem and the overparameterized setting where using either the minimum norm interpolation problem or a sparse regression problem. For the least squares or sparse regression cases, we show that the risk decreases as $m$ and $N$ increase, even in the presence of bounded or random noise. The risk bound matches the optimal scaling in the literature and the constants in our results are explicit and independent of the dimension of the data.
We study a common delivery problem encountered in nowadays online food-ordering platforms: Customers order dishes online, and the restaurant delivers the food after receiving the order. Specifically, we study a problem where $k$ vehicles of capacity $c$ are serving a set of requests ordering food from one restaurant. After a request arrives, it can be served by a vehicle moving from the restaurant to its delivery location. We are interested in serving all requests while minimizing the maximum flow-time, i.e., the maximum time length a customer waits to receive his/her food after submitting the order. We show that the problem is hard in both offline and online settings: There is a hardness of approximation of $\Omega(n)$ for the offline problem, and a lower bound of $\Omega(n)$ on the competitive ratio of any online algorithm, where $n$ is number of points in the metric. Our main result is an $O(1)$-competitive online algorithm for the uncapaciated (i.e, $c = \infty$) food delivery problem on tree metrics. Then we consider the speed-augmentation model. We develop an exponential time $(1+\epsilon)$-speeding $O(1/\epsilon)$-competitive algorithm for any $\epsilon > 0$. A polynomial time algorithm can be obtained with a speeding factor of $\alpha_{TSP}+ \epsilon$ or $\alpha_{CVRP}+ \epsilon$, depending on whether the problem is uncapacitated. Here $\alpha_{TSP}$ and $\alpha_{CVRP}$ are the best approximation factors for the traveling salesman (TSP) and capacitated vehicle routing (CVRP) problems respectively. We complement the results with some negative ones.
In this paper, we consider the problem of computing the entire sequence of the maximum degree of minors of a block-structured symbolic matrix (a generic partitioned polynomial matrix) $A = (A_{\alpha\beta} x_{\alpha \beta} t^{d_{\alpha \beta}})$, where $A_{\alpha\beta}$ is a $2 \times 2$ matrix over a field $\mathbf{F}$, $x_{\alpha \beta}$ is an indeterminate, and $d_{\alpha \beta}$ is an integer for $\alpha = 1,2,\dots, \mu$ and $\beta = 1,2,\dots,\nu$, and $t$ is an additional indeterminate. This problem can be viewed as an algebraic generalization of the maximum weight bipartite matching problem. The main result of this paper is a combinatorial $O(\mu \nu \min\{\mu, \nu\}^2)$-time algorithm for computing the entire sequence of the maximum degree of minors of a $(2 \times 2)$-type generic partitioned polynomial matrix of size $2\mu \times 2\nu$. We also present a minimax theorem, which can be used as a good characterization (NP $\cap$ co-NP characterization) for the computation of the maximum degree of minors of order $k$. Our results generalize the classical primal-dual algorithm (the Hungarian method) and minimax formula (Egerv\'ary's theorem) for the maximum weight bipartite matching problem.
We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.
Metric learning learns a metric function from training data to calculate the similarity or distance between samples. From the perspective of feature learning, metric learning essentially learns a new feature space by feature transformation (e.g., Mahalanobis distance metric). However, traditional metric learning algorithms are shallow, which just learn one metric space (feature transformation). Can we further learn a better metric space from the learnt metric space? In other words, can we learn metric progressively and nonlinearly like deep learning by just using the existing metric learning algorithms? To this end, we present a hierarchical metric learning scheme and implement an online deep metric learning framework, namely ODML. Specifically, we take one online metric learning algorithm as a metric layer, followed by a nonlinear layer (i.e., ReLU), and then stack these layers modelled after the deep learning. The proposed ODML enjoys some nice properties, indeed can learn metric progressively and performs superiorly on some datasets. Various experiments with different settings have been conducted to verify these properties of the proposed ODML.
Interest point descriptors have fueled progress on almost every problem in computer vision. Recent advances in deep neural networks have enabled task-specific learned descriptors that outperform hand-crafted descriptors on many problems. We demonstrate that commonly used metric learning approaches do not optimally leverage the feature hierarchies learned in a Convolutional Neural Network (CNN), especially when applied to the task of geometric feature matching. While a metric loss applied to the deepest layer of a CNN, is often expected to yield ideal features irrespective of the task, in fact the growing receptive field as well as striding effects cause shallower features to be better at high precision matching tasks. We leverage this insight together with explicit supervision at multiple levels of the feature hierarchy for better regularization, to learn more effective descriptors in the context of geometric matching tasks. Further, we propose to use activation maps at different layers of a CNN, as an effective and principled replacement for the multi-resolution image pyramids often used for matching tasks. We propose concrete CNN architectures employing these ideas, and evaluate them on multiple datasets for 2D and 3D geometric matching as well as optical flow, demonstrating state-of-the-art results and generalization across datasets.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.