In computational practice, most attention is paid to rational approximations of functions and approximations by the sum of exponents. We consider a wide enough class of nonlinear approximations characterized by a set of two required parameters. The approximating function is linear in the first parameter; these parameters are assumed to be positive. The individual terms of the approximating function represent a fixed function that depends nonlinearly on the second parameter. A numerical approximation minimizes the residual functional by approximating function values at individual points. The second parameter's value is set on a more extensive set of points of the interval of permissible values. The proposed approach's key feature consists in determining the first parameter on each separate iteration of the classical non-negative least squares method. The computational algorithm is used to rational approximate the function $x^{-\alpha}, \ 0 < \alpha < 1, \ x \geq 1$. The second example concerns the approximation of the stretching exponential function $\exp(- x^{\alpha} ), \ \ \quad 0 < \alpha < 1$ at $ x \geq 0$ by the sum of exponents.
We consider the problem of online interval scheduling on a single machine, where intervals arrive online in an order chosen by an adversary, and the algorithm must output a set of non-conflicting intervals. Traditionally in scheduling theory, it is assumed that intervals arrive in order of increasing start times. We drop that assumption and allow for intervals to arrive in any possible order. We call this variant any-order interval selection (AOIS). We assume that some online acceptances can be revoked, but a feasible solution must always be maintained. For unweighted intervals and deterministic algorithms, this problem is unbounded. Under the assumption that there are at most $k$ different interval lengths, we give a simple algorithm that achieves a competitive ratio of $2k$ and show that it is optimal amongst deterministic algorithms, and a restricted class of randomized algorithms we call memoryless, contributing to an open question by Adler and Azar 2003; namely whether a randomized algorithm without access to history can achieve a constant competitive ratio. We connect our model to the problem of call control on the line, and show how the algorithms of Garay et al. 1997 can be applied to our setting, resulting in an optimal algorithm for the case of proportional weights. We also consider the case of intervals arriving in a random order, and show that for single-lengthed instances, a one-directional algorithm (i.e. replacing intervals in one direction), is the only deterministic memoryless algorithm that can possibly benefit from random arrivals. Finally, we briefly discuss the case of intervals with arbitrary weights.
Numerical predictions of quantities of interest measured within physical systems rely on the use of mathematical models that should be validated, or at best, not invalidated. Model validation usually involves the comparison of experimental data (outputs from the system of interest) and model predictions, both obtained at a specific validation scenario. The design of this validation experiment should be directly relevant to the objective of the model, that of predicting a quantity of interest at a prediction scenario. In this paper, we address two specific issues arising when designing validation experiments. The first issue consists in determining an appropriate validation scenario in cases where the prediction scenario cannot be carried out in a controlled environment. The second issue concerns the selection of observations when the quantity of interest cannot be readily observed. The proposed methodology involves the computation of influence matrices that characterize the response surface of given model functionals. Minimization of the distance between influence matrices allow one for selecting a validation experiment most representative of the prediction scenario. We illustrate our approach on two numerical examples. The first example considers the validation of a simple model based on an ordinary differential equation governing an object in free fall to put in evidence the importance of the choice of the validation experiment. The second numerical experiment focuses on the transport of a pollutant and demonstrates the impact that the choice of the quantity of interest has on the validation experiment to be performed.
We explore the features of two methods of stabilization, aggregation and supremizer methods, for reduced-order modeling of parametrized optimal control problems. In both methods, the reduced basis spaces are augmented to guarantee stability. For the aggregation method, the reduced basis approximation spaces for the state and adjoint variables are augmented in such a way that the spaces are identical. For the supremizer method, the reduced basis approximation space for the state-control product space is augmented with the solutions of a supremizer equation. We implement both of these methods for solving several parametrized control problems and assess their performance. Results indicate that the number of reduced basis vectors needed to approximate the solution space to some tolerance with the supremizer method is much larger, possibly double, that for aggregation. There are also some cases where the supremizer method fails to produce a converged solution. We present results to compare the accuracy, efficiency, and computational costs associated with both methods of stabilization which suggest that stabilization by aggregation is a superior stabilization method for control problems.
In this paper, we consider the problem of recovering random graph signals with complex values. For general Bayesian estimation of complex-valued vectors, it is known that the widely-linear minimum mean-squared-error (WLMMSE) estimator can achieve a lower mean-squared-error (MSE) than that of the linear minimum MSE (LMMSE) estimator. Inspired by the WLMMSE estimator, in this paper we develop the graph signal processing (GSP)-WLMMSE estimator, which minimizes the MSE among estimators that are represented as a two-channel output of a graph filter, i.e. widely-linear GSP estimators. We discuss the properties of the proposed GSP-WLMMSE estimator. In particular, we show that the MSE of the GSP-WLMMSE estimator is always equal to or lower than the MSE of the GSP-LMMSE estimator. The GSP-WLMMSE estimator is based on diagonal covariance matrices in the graph frequency domain, and thus has reduced complexity compared with the WLMMSE estimator. This property is especially important when using the sample-mean versions of these estimators that are based on a training dataset. We then state conditions under which the low-complexity GSP-WLMMSE estimator coincides with the WLMMSE estimator. In the simulations, we investigate two synthetic estimation problems (with linear and nonlinear models) and the problem of state estimation in power systems. For these problems, it is shown that the GSP-WLMMSE estimator outperforms the GSP-LMMSE estimator and achieves similar performance to that of the WLMMSE estimator.
In this paper, we propose two families of nonconforming finite elements on $n$-rectangle meshes of any dimension to solve the sixth-order elliptic equations. The unisolvent property and the approximation ability of the new finite element spaces are established. A new mechanism, called the exchange of sub-rectangles, for investigating the weak continuities of the proposed elements is discovered. With the help of some conforming relatives for the $H^3$ problems, we establish the quasi-optimal error estimate for the tri-harmonic equation in the broken $H^3$ norm of any dimension. The theoretical results are validated further by the numerical tests in both 2D and 3D situations.
We study the properties of elections that have a given position matrix (in such elections each candidate is ranked on each position by a number of voters specified in the matrix). We show that counting elections that generate a given position matrix is #P-complete. Consequently, sampling such elections uniformly at random seems challenging and we propose a simpler algorithm, without hard guarantees. Next, we consider the problem of testing if a given matrix can be implemented by an election with a certain structure (such as single-peakedness or group-separability). Finally, we consider the problem of checking if a given position matrix can be implemented by an election with a Condorcet winner. We complement our theoretical findings with experiments.
For $V : \mathbb{R}^d \to \mathbb{R}$ coercive, we study the convergence rate for the $L^1$-distance of the empiric minimizer, which is the true minimum of the function $V$ sampled with noise with a finite number $n$ of samples, to the minimum of $V$. We show that in general, for unbounded functions with fast growth, the convergence rate is bounded above by $a_n n^{-1/q}$, where $q$ is the dimension of the latent random variable and where $a_n = o(n^\varepsilon)$ for every $\varepsilon > 0$. We then present applications to optimization problems arising in Machine Learning and in Monte Carlo simulation.
Control Barrier Functions (CBFs) have been applied to provide safety guarantees for robot navigation. Traditional approaches consider fixed CBFs during navigation and hand-tune the underlying parameters apriori. Such approaches are inefficient and vulnerable to changes in the environment. The goal of this paper is to learn CBFs for multi-robot navigation based on what robots perceive about their environment. In order to guarantee the feasibility of the navigation task, while ensuring robot safety, we pursue a trade-off between conservativeness and aggressiveness in robot behavior by defining dynamic environment-aware CBF constraints. Since the explicit relationship between CBF constraints and navigation performance is challenging to model, we leverage reinforcement learning to learn time-varying CBFs in a model-free manner. We parameterize the CBF policy with graph neural networks (GNNs), and design GNNs that are translation invariant and permutation equivariant, to synthesize decentralized policies that generalize across environments. The proposed approach maintains safety guarantees (due to the underlying CBFs), while optimizing navigation performance (due to the reward-based learning). We perform simulations that compare the proposed approach with fixed CBFs tuned by exhaustive grid-search. The results show that environment-aware CBFs are capable of adapting to robot movements and obstacle changes, yielding improved navigation performance and robust generalization.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.