亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of online interval scheduling on a single machine, where intervals arrive online in an order chosen by an adversary, and the algorithm must output a set of non-conflicting intervals. Traditionally in scheduling theory, it is assumed that intervals arrive in order of increasing start times. We drop that assumption and allow for intervals to arrive in any possible order. We call this variant any-order interval selection (AOIS). We assume that some online acceptances can be revoked, but a feasible solution must always be maintained. For unweighted intervals and deterministic algorithms, this problem is unbounded. Under the assumption that there are at most $k$ different interval lengths, we give a simple algorithm that achieves a competitive ratio of $2k$ and show that it is optimal amongst deterministic algorithms, and a restricted class of randomized algorithms we call memoryless, contributing to an open question by Adler and Azar 2003; namely whether a randomized algorithm without access to history can achieve a constant competitive ratio. We connect our model to the problem of call control on the line, and show how the algorithms of Garay et al. 1997 can be applied to our setting, resulting in an optimal algorithm for the case of proportional weights. We also consider the case of intervals arriving in a random order, and show that for single-lengthed instances, a one-directional algorithm (i.e. replacing intervals in one direction), is the only deterministic memoryless algorithm that can possibly benefit from random arrivals. Finally, we briefly discuss the case of intervals with arbitrary weights.

相關內容

Optimal model reduction for large-scale linear dynamical systems is studied. In contrast to most existing works, the systems under consideration are not required to be stable, neither in discrete nor in continuous time. As a consequence, the underlying rational transfer functions are allowed to have poles in general domains in the complex plane. In particular, this covers the case of specific conservative partial differential equations such as the linear Schr\"odinger and the undamped linear wave equation with spectra on the imaginary axis. By an appropriate modification of the classical continuous time Hardy space $\mathcal{H}_2$, a new $\mathcal{H}_2$ like optimal model reduction problem is introduced and first order optimality conditions are derived. As in the classical $\mathcal{H}_2$ case, these conditions exhibit a rational Hermite interpolation structure for which an iterative model reduction algorithm is proposed. Numerical examples demonstrate the effectiveness of the new method.

While gradient based methods are ubiquitous in machine learning, selecting the right step size often requires "hyperparameter tuning". This is because backtracking procedures like Armijo's rule depend on quality evaluations in every step, which are not available in a stochastic context. Since optimization schemes can be motivated using Taylor approximations, we replace the Taylor approximation with the conditional expectation (the best $L^2$ estimator) and propose "Random Function Descent" (RFD). Under light assumptions common in Bayesian optimization, we prove that RFD is identical to gradient descent, but with calculable step sizes, even in a stochastic context. We beat untuned Adam in synthetic benchmarks. To close the performance gap to tuned Adam, we propose a heuristic extension competitive with tuned Adam.

User interaction data is an important source of supervision in counterfactual learning to rank (CLTR). Such data suffers from presentation bias. Much work in unbiased learning to rank (ULTR) focuses on position bias, i.e., items at higher ranks are more likely to be examined and clicked. Inter-item dependencies also influence examination probabilities, with outlier items in a ranking as an important example. Outliers are defined as items that observably deviate from the rest and therefore stand out in the ranking. In this paper, we identify and introduce the bias brought about by outlier items: users tend to click more on outlier items and their close neighbors. To this end, we first conduct a controlled experiment to study the effect of outliers on user clicks. Next, to examine whether the findings from our controlled experiment generalize to naturalistic situations, we explore real-world click logs from an e-commerce platform. We show that, in both scenarios, users tend to click significantly more on outlier items than on non-outlier items in the same rankings. We show that this tendency holds for all positions, i.e., for any specific position, an item receives more interactions when presented as an outlier as opposed to a non-outlier item. We conclude from our analysis that the effect of outliers on clicks is a type of bias that should be addressed in ULTR. We therefore propose an outlier-aware click model that accounts for both outlier and position bias, called outlier-aware position-based model ( OPBM). We estimate click propensities based on OPBM ; through extensive experiments performed on both real-world e-commerce data and semi-synthetic data, we verify the effectiveness of our outlier-aware click model. Our results show the superiority of OPBM against baselines in terms of ranking performance and true relevance estimation.

Since their introduction in Abadie and Gardeazabal (2003), Synthetic Control (SC) methods have quickly become one of the leading methods for estimating causal effects in observational studies in settings with panel data. Formal discussions often motivate SC methods by the assumption that the potential outcomes were generated by a factor model. Here we study SC methods from a design-based perspective, assuming a model for the selection of the treated unit(s) and period(s). We show that the standard SC estimator is generally biased under random assignment. We propose a Modified Unbiased Synthetic Control (MUSC) estimator that guarantees unbiasedness under random assignment and derive its exact, randomization-based, finite-sample variance. We also propose an unbiased estimator for this variance. We document in settings with real data that under random assignment, SC-type estimators can have root mean-squared errors that are substantially lower than that of other common estimators. We show that such an improvement is weakly guaranteed if the treated period is similar to the other periods, for example, if the treated period was randomly selected. While our results only directly apply in settings where treatment is assigned randomly, we believe that they can complement model-based approaches even for observational studies.

Survival analysis is the problem of estimating probability distributions for future event times, which can be seen as a problem in uncertainty quantification. Although there are fundamental theories on strictly proper scoring rules for uncertainty quantification, little is known about those for survival analysis. In this paper, we investigate extensions of four major strictly proper scoring rules for survival analysis and we prove that these extensions are proper under certain conditions, which arise from the discretization of the estimation of probability distributions. We also compare the estimation performances of these extended scoring rules by using real datasets, and the extensions of the logarithmic score and the Brier score performed the best.

In this paper, we address the problem of safe trajectory planning for autonomous search and exploration in constrained, cluttered environments. Guaranteeing safe (collision-free) trajectories is a challenging problem that has garnered significant due to its importance in the successful utilization of robots in search and exploration tasks. This work contributes a method that generates guaranteed safety-critical search trajectories in a cluttered environment. Our approach integrates safety-critical constraints using discrete control barrier functions (DCBFs) with ergodic trajectory optimization to enable safe exploration. Ergodic trajectory optimization plans continuous exploratory trajectories that guarantee complete coverage of a space. We demonstrate through simulated and experimental results on a drone that our approach is able to generate trajectories that enable safe and effective exploration. Furthermore, we show the efficacy of our approach for safe exploration using real-world single- and multi- drone platforms.

Integer linear programming models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work develops the first standalone local search solver for general integer linear programming validated on a large heterogeneous problem dataset. We propose a local search framework that switches in three modes, namely Search, Improve, and Restore modes, and design tailored operators adapted to different modes, thus improve the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances.

Theoretical studies on transfer learning or domain adaptation have so far focused on situations with a known hypothesis class or model; however in practice, some amount of model selection is usually involved, often appearing under the umbrella term of hyperparameter-tuning: for example, one may think of the problem of tuning for the right neural network architecture towards a target task, while leveraging data from a related source task. Now, in addition to the usual tradeoffs on approximation vs estimation errors involved in model selection, this problem brings in a new complexity term, namely, the transfer distance between source and target distributions, which is known to vary with the choice of hypothesis class. We present a first study of this problem, focusing on classification; in particular, the analysis reveals some remarkable phenomena: adaptive rates, i.e., those achievable with no distributional information, can be arbitrarily slower than oracle rates, i.e., when given knowledge on distances.

The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [ICALP '19]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of $1-1/e-\epsilon$ and both generalize and accelerate the results of Ene and Nguyen [ICALP '19]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondr\'ak [SODA '14]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel FREEZE operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [TALG '05] that maintains the maximum weight basis under insertions and deletions of elements in $O(\log n)$ time. For the transversal matroid the FREEZE operation corresponds to requiring the data structure to keep a certain set $S$ of vertices matched, a property that we call $S$-stability.

The high-resolution differential equation framework has been proven to be tailor-made for Nesterov's accelerated gradient descent method~(\texttt{NAG}) and its proximal correspondence -- the class of faster iterative shrinkage thresholding algorithms (FISTA). However, the systems of theories is not still complete, since the underdamped case ($r < 2$) has not been included. In this paper, based on the high-resolution differential equation framework, we construct the new Lyapunov functions for the underdamped case, which is motivated by the power of the time $t^{\gamma}$ or the iteration $k^{\gamma}$ in the mixed term. When the momentum parameter $r$ is $2$, the new Lyapunov functions are identical to the previous ones. These new proofs do not only include the convergence rate of the objective value previously obtained according to the low-resolution differential equation framework but also characterize the convergence rate of the minimal gradient norm square. All the convergence rates obtained for the underdamped case are continuously dependent on the parameter $r$. In addition, it is observed that the high-resolution differential equation approximately simulates the convergence behavior of~\texttt{NAG} for the critical case $r=-1$, while the low-resolution differential equation degenerates to the conservative Newton's equation. The high-resolution differential equation framework also theoretically characterizes the convergence rates, which are consistent with that obtained for the underdamped case with $r=-1$.

北京阿比特科技有限公司