亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning has been extensively used in wireless communication problems, including channel estimation. Although several data-driven approaches exist, a fair and realistic comparison between them is difficult due to inconsistencies in the experimental conditions and the lack of a standardized experimental design. In addition, the performance of data-driven approaches is often compared based on empirical analysis. The lack of reproducibility and availability of standardized evaluation tools (e.g., datasets, codebases) hinder the development and progress of data-driven methods for channel estimation and wireless communication in general. In this work, we introduce an initiative to build benchmarks that unify several data-driven OFDM channel estimation approaches. Specifically, we present CeBed (a testbed for channel estimation) including different datasets covering various systems models and propagation conditions along with the implementation of ten deep and traditional baselines. This benchmark considers different practical aspects such as the robustness of the data-driven models, the number and the arrangement of pilots, and the number of receive antennas. This work offers a comprehensive and unified framework to help researchers evaluate and design data-driven channel estimation algorithms.

相關內容

Crowd counting has gained significant popularity due to its practical applications. However, mainstream counting methods ignore precise individual localization and suffer from annotation noise because of counting from estimating density maps. Additionally, they also struggle with high-density images.To address these issues, we propose an end-to-end model called Fine-Grained Extraction Network (FGENet). Different from methods estimating density maps, FGENet directly learns the original coordinate points that represent the precise localization of individuals.This study designs a fusion module, named Fine-Grained Feature Pyramid(FGFP), that is used to fuse feature maps extracted by the backbone of FGENet. The fused features are then passed to both regression and classification heads, where the former provides predicted point coordinates for a given image, and the latter determines the confidence level for each predicted point being an individual. At the end, FGENet establishes correspondences between prediction points and ground truth points by employing the Hungarian algorithm. For training FGENet, we design a robust loss function, named Three-Task Combination (TTC), to mitigate the impact of annotation noise. Extensive experiments are conducted on four widely used crowd counting datasets. Experimental results demonstrate the effectiveness of FGENet. Notably, our method achieves a remarkable improvement of 3.14 points in Mean Absolute Error (MAE) on the ShanghaiTech Part A dataset, showcasing its superiority over the existing state-of-the-art methods. Even more impressively, FGENet surpasses previous benchmarks on the UCF\_CC\_50 dataset with an astounding enhancement of 30.16 points in MAE.

Machine learning heavily relies on data, but real-world applications often encounter various data-related issues. These include data of poor quality, insufficient data points leading to under-fitting of machine learning models, and difficulties in data access due to concerns surrounding privacy, safety, and regulations. In light of these challenges, the concept of synthetic data generation emerges as a promising alternative that allows for data sharing and utilization in ways that real-world data cannot facilitate. This paper presents a comprehensive systematic review of existing studies that employ machine learning models for the purpose of generating synthetic data. The review encompasses various perspectives, starting with the applications of synthetic data generation, spanning computer vision, speech, natural language processing, healthcare, and business domains. Additionally, it explores different machine learning methods, with particular emphasis on neural network architectures and deep generative models. The paper also addresses the crucial aspects of privacy and fairness concerns related to synthetic data generation. Furthermore, this study identifies the challenges and opportunities prevalent in this emerging field, shedding light on the potential avenues for future research. By delving into the intricacies of synthetic data generation, this paper aims to contribute to the advancement of knowledge and inspire further exploration in synthetic data generation.

The capability of video super-resolution (VSR) to synthesize high-resolution (HR) video from ideal datasets has been demonstrated in many works. However, applying the VSR model to real-world video with unknown and complex degradation remains a challenging task. First, existing degradation metrics in most VSR methods are not able to effectively simulate real-world noise and blur. On the contrary, simple combinations of classical degradation are used for real-world noise modeling, which led to the VSR model often being violated by out-of-distribution noise. Second, many SR models focus on noise simulation and transfer. Nevertheless, the sampled noise is monotonous and limited. To address the aforementioned problems, we propose a Negatives augmentation strategy for generalized noise modeling in Video Super-Resolution (NegVSR) task. Specifically, we first propose sequential noise generation toward real-world data to extract practical noise sequences. Then, the degeneration domain is widely expanded by negative augmentation to build up various yet challenging real-world noise sets. We further propose the augmented negative guidance loss to learn robust features among augmented negatives effectively. Extensive experiments on real-world datasets (e.g., VideoLQ and FLIR) show that our method outperforms state-of-the-art methods with clear margins, especially in visual quality. Project page is available at: //negvsr.github.io/.

Recommender systems aim to recommend the most suitable items to users from a large number of candidates. Their computation cost grows as the number of user requests and the complexity of services (or models) increases. Under the limitation of computation resources (CRs), how to make a trade-off between computation cost and business revenue becomes an essential question. The existing studies focus on dynamically allocating CRs in queue truncation scenarios (i.e., allocating the size of candidates), and formulate the CR allocation problem as an optimization problem with constraints. Some of them focus on single-phase CR allocation, and others focus on multi-phase CR allocation but introduce some assumptions about queue truncation scenarios. However, these assumptions do not hold in other scenarios, such as retrieval channel selection and prediction model selection. Moreover, existing studies ignore the state transition process of requests between different phases, limiting the effectiveness of their approaches. This paper proposes a Reinforcement Learning (RL) based Multi-Phase Computation Allocation approach (RL-MPCA), which aims to maximize the total business revenue under the limitation of CRs. RL-MPCA formulates the CR allocation problem as a Weakly Coupled MDP problem and solves it with an RL-based approach. Specifically, RL-MPCA designs a novel deep Q-network to adapt to various CR allocation scenarios, and calibrates the Q-value by introducing multiple adaptive Lagrange multipliers (adaptive-$\lambda$) to avoid violating the global CR constraints. Finally, experiments on the offline simulation environment and online real-world recommender system validate the effectiveness of our approach.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.

Deep learning have achieved promising results on a wide spectrum of AI applications. Larger datasets and models consistently yield better performance. However, we generally spend longer training time on more computation and communication. In this survey, we aim to provide a clear sketch about the optimizations for large-scale deep learning with regard to the model accuracy and model efficiency. We investigate algorithms that are most commonly used for optimizing, elaborate the debatable topic of generalization gap arises in large-batch training, and review the SOTA strategies in addressing the communication overhead and reducing the memory footprints.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

北京阿比特科技有限公司