Much hope for finding new physics phenomena at microscopic scale relies on the observations obtained from High Energy Physics experiments, like the ones performed at the Large Hadron Collider (LHC). However, current experiments do not indicate clear signs of new physics that could guide the development of additional Beyond Standard Model (BSM) theories. Identifying signatures of new physics out of the enormous amount of data produced at the LHC falls into the class of anomaly detection and constitutes one of the greatest computational challenges. In this article, we propose a novel strategy to perform anomaly detection in a supervised learning setting, based on the artificial creation of anomalies through a random process. For the resulting supervised learning problem, we successfully apply classical and quantum Support Vector Classifiers (CSVC and QSVC respectively) to identify the artificial anomalies among the SM events. Even more promising, we find that employing an SVC trained to identify the artificial anomalies, it is possible to identify realistic BSM events with high accuracy. In parallel, we also explore the potential of quantum algorithms for improving the classification accuracy and provide plausible conditions for the best exploitation of this novel computational paradigm.
In this paper, we propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples. We achieve this by combining two novel paradigms that have recently seen much success in a wide variety of real-world applications: graph neural networks (GNN), and meta-learning. We train a Meta-GNN based classifier that learns a global model from a set of training patients such that this global model can eventually be adapted to a new unseen patient using very limited samples. We apply our approach on the TUSZ-dataset, one of the largest and publicly available benchmark datasets for epilepsy. We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
Quantum Machine Learning has the potential to improve traditional machine learning methods and overcome some of the main limitations imposed by the classical computing paradigm. However, the practical advantages of using quantum resources to solve pattern recognition tasks are still to be demonstrated. This work proposes a universal, efficient framework that can reproduce the output of a plethora of classical supervised machine learning algorithms exploiting quantum computation's advantages. The proposed framework is named Multiple Aggregator Quantum Algorithm (MAQA) due to its capability to combine multiple and diverse functions to solve typical supervised learning problems. In its general formulation, MAQA can be potentially adopted as the quantum counterpart of all those models falling into the scheme of aggregation of multiple functions, such as ensemble algorithms and neural networks. From a computational point of view, the proposed framework allows generating an exponentially large number of different transformations of the input at the cost of increasing the depth of the corresponding quantum circuit linearly. Thus, MAQA produces a model with substantial descriptive power to broaden the horizon of possible applications of quantum machine learning with a computational advantage over classical methods. As a second meaningful addition, we discuss the adoption of the proposed framework as hybrid quantum-classical and fault-tolerant quantum algorithm.
Users interact with text, image, code, or other editors on a daily basis. However, machine learning models are rarely trained in the settings that reflect the interactivity between users and their editor. This is understandable as training AI models with real users is not only slow and costly, but what these models learn may be specific to user interface design choices. Unfortunately, this means most of the research on text, code, and image generation has focused on non-interactive settings, whereby the model is expected to get everything right without accounting for any input from a user who may be willing to help. We introduce a new Interactive Text Generation task that allows training generation models interactively without the costs of involving real users, by using user simulators that provide edits that guide the model towards a given target text. We train our interactive models using Imitation Learning, and our experiments against competitive non-interactive generation models show that models trained interactively are superior to their non-interactive counterparts, even when all models are given the same budget of user inputs or edits.
Despite the great current relevance of Artificial Intelligence, and the extraordinary innovations that this discipline has brought to many fields -among which, without a doubt, medicine is found-, experts in medical applications of Artificial Intelligence are looking for new alternatives to solve problems for which current Artificial Intelligence programs do not provide with optimal solutions. For this, one promising option could be the use of the concepts and ideas of Quantum Mechanics, for the construction of quantum-based Artificial Intelligence systems. From a hybrid classical-quantum perspective, this article deals with the application of quantum computing techniques for the staging of Invasive Ductal Carcinoma of the breast. It includes: (1) a general explanation of a classical, and well-established, approach for medical reasoning, (2) a description of the clinical problem, (3) a conceptual model for staging invasive ductal carcinoma, (4) some basic notions about Quantum Rule-Based Systems, (5) a step-by-step explanation of the proposed approach for quantum staging of the invasive ductal carcinoma, and (6) the results obtained after running the quantum system on a significant number of use cases. A detailed discussion is also provided at the end of this paper.
Group Anomaly Detection (GAD) reveals anomalous behavior among groups consisting of multiple member instances, which are, individually considered, not necessarily anomalous. This task is of major importance across multiple disciplines, in which also sequences like trajectories can be considered as a group. However, with increasing amount and heterogenity of group members, actual abnormal groups get harder to detect, especially in an unsupervised or semi-supervised setting. Recurrent Neural Networks are well established deep sequence models, but recent works have shown that their performance can decrease with increasing sequence lengths. Hence, we introduce with this paper GADFormer, a GAD specific BERT architecture, capable to perform attention-based Group Anomaly Detection on trajectories in an unsupervised and semi-supervised setting. We show formally and experimentally how trajectory outlier detection can be realized as an attention-based Group Anomaly Detection problem. Furthermore, we introduce a Block Attention-anomaly Score (BAS) to improve the interpretability of transformer encoder blocks for GAD. In addition to that, synthetic trajectory generation allows us to optimize the training for domain-specific GAD. In extensive experiments we investigate our approach versus GRU in their robustness for trajectory noise and novelties on synthetic and real world datasets.
Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.