亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Personalized treatment effect estimates are often of interest in high-stakes applications -- thus, before deploying a model estimating such effects in practice, one needs to be sure that the best candidate from the ever-growing machine learning toolbox for this task was chosen. Unfortunately, due to the absence of counterfactual information in practice, it is usually not possible to rely on standard validation metrics for doing so, leading to a well-known model selection dilemma in the treatment effect estimation literature. While some solutions have recently been investigated, systematic understanding of the strengths and weaknesses of different model selection criteria is still lacking. In this paper, instead of attempting to declare a global `winner', we therefore empirically investigate success- and failure modes of different selection criteria. We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them, and provide interesting insights into the relative (dis)advantages of different criteria alongside desiderata for the design of further illuminating empirical studies in this context.

相關內容

Price discrimination, which refers to the strategy of setting different prices for different customer groups, has been widely used in online retailing. Although it helps boost the collected revenue for online retailers, it might create serious concerns about fairness, which even violates the regulation and laws. This paper studies the problem of dynamic discriminatory pricing under fairness constraints. In particular, we consider a finite selling horizon of length $T$ for a single product with two groups of customers. Each group of customers has its unknown demand function that needs to be learned. For each selling period, the seller determines the price for each group and observes their purchase behavior. While existing literature mainly focuses on maximizing revenue, ensuring fairness among different customers has not been fully explored in the dynamic pricing literature. This work adopts the fairness notion from Cohen et al. (2022). For price fairness, we propose an optimal dynamic pricing policy regarding regret, which enforces the strict price fairness constraint. In contrast to the standard $\sqrt{T}$-type regret in online learning, we show that the optimal regret in our case is $\tilde{O}(T^{4/5})$. We further extend our algorithm to a more general notion of fairness, which includes demand fairness as a special case. To handle this general class, we propose a soft fairness constraint and develop a dynamic pricing policy that achieves $\tilde{O}(T^{4/5})$ regret. We also demonstrate that our algorithmic techniques can be adapted to more general scenarios such as fairness among multiple groups of customers.

Considerable recent work has focused on methods for analyzing experiments which exhibit treatment interference -- that is, when the treatment status of one unit may affect the response of another unit. Such settings are common in experiments on social networks. We consider a model of treatment interference -- the K-nearest neighbors interference model (KNNIM) -- for which the response of one unit depends not only on the treatment status given to that unit, but also the treatment status of its $K$ ``closest'' neighbors. We derive causal estimands under KNNIM in a way that allows us to identify how each of the $K$-nearest neighbors contributes to the indirect effect of treatment. We propose unbiased estimators for these estimands and derive conservative variance estimates for these unbiased estimators. We then consider extensions of these estimators under an assumption of no weak interaction between direct and indirect effects. We perform a simulation study to determine the efficacy of these estimators under different treatment interference scenarios. We apply our methodology to an experiment designed to assess the impact of a conflict-reducing program in middle schools in New Jersey, and we give evidence that the effect of treatment propagates primarily through a unit's closest connection.

Two-component mixture models have proved to be a powerful tool for modeling heterogeneity in several cluster analysis contexts. However, most methods based on these models assume a constant behavior for the mixture weights, which can be restrictive and unsuitable for some applications. In this paper, we relax this assumption and allow the mixture weights to vary according to the index (e.g., time) to make the model more adaptive to a broader range of data sets. We propose an efficient MCMC algorithm to jointly estimate both component parameters and dynamic weights from their posterior samples. We evaluate the method's performance by running Monte Carlo simulation studies under different scenarios for the dynamic weights. In addition, we apply the algorithm to a time series that records the level reached by a river in southern Brazil. The Taquari River is a water body whose frequent flood inundations have caused various damage to riverside communities. Implementing a dynamic mixture model allows us to properly describe the flood regimes for the areas most affected by these phenomena.

This paper studies the estimation and inference of treatment histories in panel data settings when treatments change dynamically over time. We propose a method that allows for (i) treatments to be assigned dynamically over time based on high-dimensional covariates, past outcomes and treatments; (ii) outcomes and time-varying covariates to depend on treatment trajectories; (iii) heterogeneity of treatment effects. Our approach recursively projects potential outcomes' expectations on past histories. It then controls the bias by balancing dynamically observable characteristics. We study the asymptotic and numerical properties of the estimator and illustrate the benefits of the procedure in an empirical application.

Understanding how and why certain communities bear a disproportionate burden of disease is challenging due to the scarcity of data on these communities. Surveys provide a useful avenue for accessing hard-to-reach populations, as many surveys specifically oversample understudied and vulnerable populations. When survey data is used for analysis, it is important to account for the complex survey design that gave rise to the data, in order to avoid biased conclusions. The field of Bayesian survey statistics aims to account for such survey design while leveraging the advantages of Bayesian models, which can flexibly handle sparsity through borrowing of information and provide a coherent inferential framework to easily obtain variances for complex models and data types. For these reasons, Bayesian survey methods seem uniquely well-poised for health disparities research, where heterogeneity and sparsity are frequent considerations. This review discusses three main approaches found in the Bayesian survey methodology literature: 1) multilevel regression and post-stratification, 2) weighted pseudolikelihood-based methods, and 3) synthetic population generation. We discuss advantages and disadvantages of each approach, examine recent applications and extensions, and consider how these approaches may be leveraged to improve research in population health equity.

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

北京阿比特科技有限公司