We study mean-field variational Bayesian inference using the TAP approach, for Z2-synchronization as a prototypical example of a high-dimensional Bayesian model. We show that for any signal strength $\lambda > 1$ (the weak-recovery threshold), there exists a unique local minimizer of the TAP free energy functional near the mean of the Bayes posterior law. Furthermore, the TAP free energy in a local neighborhood of this minimizer is strongly convex. Consequently, a natural-gradient/mirror-descent algorithm achieves linear convergence to this minimizer from a local initialization, which may be obtained by a constant number of iterates of Approximate Message Passing (AMP). This provides a rigorous foundation for variational inference in high dimensions via minimization of the TAP free energy. We also analyze the finite-sample convergence of AMP, showing that AMP is asymptotically stable at the TAP minimizer for any $\lambda > 1$, and is linearly convergent to this minimizer from a spectral initialization for sufficiently large $\lambda$. Such a guarantee is stronger than results obtainable by state evolution analyses, which only describe a fixed number of AMP iterations in the infinite-sample limit. Our proofs combine the Kac-Rice formula and Sudakov-Fernique Gaussian comparison inequality to analyze the complexity of critical points that satisfy strong convexity and stability conditions within their local neighborhoods.
Copulas have become very popular as a statistical model to represent dependence structures between multiple variables in many applications. Given a finite number of constraints in advance, the minimum information copula is the closest to the uniform copula when measured in Kullback-Leibler divergence. For these constraints, the expectation of moments such as Spearman's rho are mostly considered in previous researches. These copulas are obtained as the optimal solution to convex programming. On the other hand, other types of correlation have not been studied previously in this context. In this paper, we present MICK, a novel minimum information copula where Kendall's rank correlation is specified. Although this copula is defined as the solution to non-convex optimization problem, we show that the uniqueness of this copula is guaranteed when correlation is small enough. We also show that the family of checkerboard copulas admits representation as non-orthogonal vector space. In doing so, we observe local and global dependencies of MICK, thereby unifying results on minimum information copulas.
Classical analysis of convex and non-convex optimization methods often requires the Lipshitzness of the gradient, which limits the analysis to functions bounded by quadratics. Recent work relaxed this requirement to a non-uniform smoothness condition with the Hessian norm bounded by an affine function of the gradient norm, and proved convergence in the non-convex setting via gradient clipping, assuming bounded noise. In this paper, we further generalize this non-uniform smoothness condition and develop a simple, yet powerful analysis technique that bounds the gradients along the trajectory, thereby leading to stronger results for both convex and non-convex optimization problems. In particular, we obtain the classical convergence rates for (stochastic) gradient descent and Nesterov's accelerated gradient method in the convex and/or non-convex setting under this general smoothness condition. The new analysis approach does not require gradient clipping and allows heavy-tailed noise with bounded variance in the stochastic setting.
This work is concerned with the analysis of a space-time finite element discontinuous Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propagation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency Biot's equations in the poroelastic medium and the elastodynamics equation for the elastic one. To realize the coupling, suitable transmission conditions on the interface between the two domains are (weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled with a dG time integration scheme, resulting in a full space-time dG discretization. We present the stability analysis for both the continuous and the semidiscrete formulations, and we derive error estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are also presented to investigate the capability of the proposed method in relevant geophysical scenarios.
As a computational alternative to Markov chain Monte Carlo approaches, variational inference (VI) is becoming more and more popular for approximating intractable posterior distributions in large-scale Bayesian models due to its comparable efficacy and superior efficiency. Several recent works provide theoretical justifications of VI by proving its statistical optimality for parameter estimation under various settings; meanwhile, formal analysis on the algorithmic convergence aspects of VI is still largely lacking. In this paper, we consider the common coordinate ascent variational inference (CAVI) algorithm for implementing the mean-field (MF) VI towards optimizing a Kullback--Leibler divergence objective functional over the space of all factorized distributions. Focusing on the two-block case, we analyze the convergence of CAVI by leveraging the extensive toolbox from functional analysis and optimization. We provide general conditions for certifying global or local exponential convergence of CAVI. Specifically, a new notion of generalized correlation for characterizing the interaction between the constituting blocks in influencing the VI objective functional is introduced, which according to the theory, quantifies the algorithmic contraction rate of two-block CAVI. As illustrations, we apply the developed theory to a number of examples, and derive explicit problem-dependent upper bounds on the algorithmic contraction rate.
The identification of the dependent components in multiple data sets is a fundamental problem in many practical applications. The challenge in these applications is that often the data sets are high-dimensional with few observations or available samples and contain latent components with unknown probability distributions. A novel mathematical formulation of this problem is proposed, which enables the inference of the underlying correlation structure with strict false positive control. In particular, the false discovery rate is controlled at a pre-defined threshold on two levels simultaneously. The deployed test statistics originate in the sample coherence matrix. The required probability models are learned from the data using the bootstrap. Local false discovery rates are used to solve the multiple hypothesis testing problem. Compared to the existing techniques in the literature, the developed technique does not assume an a priori correlation structure and work well when the number of data sets is large while the number of observations is small. In addition, it can handle the presence of distributional uncertainties, heavy-tailed noise, and outliers.
We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made important advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another interesting type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. For low-rank matrices the Hessian of this loss can theoretically blow up, which creates challenges to analyze convergence of optimizaton methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss and convergence results for finite step size gradient descent under certain assumptions on the initial weights.
We introduce Logical Offline Cycle Consistency Optimization (LOCCO), a scalable, semi-supervised method for training a neural semantic parser. Conceptually, LOCCO can be viewed as a form of self-learning where the semantic parser being trained is used to generate annotations for unlabeled text that are then used as new supervision. To increase the quality of annotations, our method utilizes a count-based prior over valid formal meaning representations and a cycle-consistency score produced by a neural text generation model as additional signals. Both the prior and semantic parser are updated in an alternate fashion from full passes over the training data, which can be seen as approximating the marginalization of latent structures through stochastic variational inference. The use of a count-based prior, frozen text generation model, and offline annotation process yields an approach with negligible complexity and latency increases as compared to conventional self-learning. As an added bonus, the annotations produced by LOCCO can be trivially repurposed to train a neural text generation model. We demonstrate the utility of LOCCO on the well-known WebNLG benchmark where we obtain an improvement of 2 points against a self-learning parser under equivalent conditions, an improvement of 1.3 points against the previous state-of-the-art parser, and competitive text generation performance in terms of BLEU score.
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data.
We address the problem of biased gradient estimation in deep Boltzmann machines (DBMs). The existing method to obtain an unbiased estimator uses a maximal coupling based on a Gibbs sampler, but when the state is high-dimensional, it takes a long time to converge. In this study, we propose to use a coupling based on the Metropolis-Hastings (MH) and to initialize the state around a local mode of the target distribution. Because of the propensity of MH to reject proposals, the coupling tends to converge in only one step with a high probability, leading to high efficiency. We find that our method allows DBMs to be trained in an end-to-end fashion without greedy pretraining. We also propose some practical techniques to further improve the performance of DBMs. We empirically demonstrate that our training algorithm enables DBMs to show comparable generative performance to other deep generative models, achieving the FID score of 10.33 for MNIST.
Energy-based models (EBMs) are generative models inspired by statistical physics with a wide range of applications in unsupervised learning. Their performance is best measured by the cross-entropy (CE) of the model distribution relative to the data distribution. Using the CE as the objective for training is however challenging because the computation of its gradient with respect to the model parameters requires sampling the model distribution. Here we show how results for nonequilibrium thermodynamics based on Jarzynski equality together with tools from sequential Monte-Carlo sampling can be used to perform this computation efficiently and avoid the uncontrolled approximations made using the standard contrastive divergence algorithm. Specifically, we introduce a modification of the unadjusted Langevin algorithm (ULA) in which each walker acquires a weight that enables the estimation of the gradient of the cross-entropy at any step during GD, thereby bypassing sampling biases induced by slow mixing of ULA. We illustrate these results with numerical experiments on Gaussian mixture distributions as well as the MNIST dataset. We show that the proposed approach outperforms methods based on the contrastive divergence algorithm in all the considered situations.