亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce Logical Offline Cycle Consistency Optimization (LOCCO), a scalable, semi-supervised method for training a neural semantic parser. Conceptually, LOCCO can be viewed as a form of self-learning where the semantic parser being trained is used to generate annotations for unlabeled text that are then used as new supervision. To increase the quality of annotations, our method utilizes a count-based prior over valid formal meaning representations and a cycle-consistency score produced by a neural text generation model as additional signals. Both the prior and semantic parser are updated in an alternate fashion from full passes over the training data, which can be seen as approximating the marginalization of latent structures through stochastic variational inference. The use of a count-based prior, frozen text generation model, and offline annotation process yields an approach with negligible complexity and latency increases as compared to conventional self-learning. As an added bonus, the annotations produced by LOCCO can be trivially repurposed to train a neural text generation model. We demonstrate the utility of LOCCO on the well-known WebNLG benchmark where we obtain an improvement of 2 points against a self-learning parser under equivalent conditions, an improvement of 1.3 points against the previous state-of-the-art parser, and competitive text generation performance in terms of BLEU score.

相關內容

Medical imaging has witnessed remarkable progress but usually requires a large amount of high-quality annotated data which is time-consuming and costly to obtain. To alleviate this burden, semi-supervised learning has garnered attention as a potential solution. In this paper, we present Meta-Learning for Bootstrapping Medical Image Segmentation (MLB-Seg), a novel method for tackling the challenge of semi-supervised medical image segmentation. Specifically, our approach first involves training a segmentation model on a small set of clean labeled images to generate initial labels for unlabeled data. To further optimize this bootstrapping process, we introduce a per-pixel weight mapping system that dynamically assigns weights to both the initialized labels and the model's own predictions. These weights are determined using a meta-process that prioritizes pixels with loss gradient directions closer to those of clean data, which is based on a small set of precisely annotated images. To facilitate the meta-learning process, we additionally introduce a consistency-based Pseudo Label Enhancement (PLE) scheme that improves the quality of the model's own predictions by ensembling predictions from various augmented versions of the same input. In order to improve the quality of the weight maps obtained through multiple augmentations of a single input, we introduce a mean teacher into the PLE scheme. This method helps to reduce noise in the weight maps and stabilize its generation process. Our extensive experimental results on public atrial and prostate segmentation datasets demonstrate that our proposed method achieves state-of-the-art results under semi-supervision. Our code is available at //github.com/aijinrjinr/MLB-Seg.

We study the use of local consistency methods as reductions between constraint satisfaction problems (CSPs), and promise version thereof, with the aim to classify these reductions in a similar way as the algebraic approach classifies gadget reductions between CSPs. This research is motivated by the requirement of more expressive reductions in the scope of promise CSPs. While gadget reductions are enough to provide all necessary hardness in the scope of (finite domain) non-promise CSP, in promise CSPs a wider class of reductions needs to be used. We provide a general framework of reductions, which we call consistency reductions, that covers most (if not all) reductions recently used for proving NP-hardness of promise CSPs. We prove some basic properties of these reductions, and provide the first steps towards understanding the power of consistency reductions by characterizing a fragment associated to arc-consistency in terms of polymorphisms of the template. In addition to showing hardness, consistency reductions can also be used to provide feasible algorithms by reducing to a fixed tractable (promise) CSP, for example, to solving systems of affine equations. In this direction, among other results, we describe the well-known Sherali-Adams hierarchy for CSP in terms of a consistency reduction to linear programming.

We investigate the mathematical capabilities of two iterations of ChatGPT (released 9-January-2023 and 30-January-2023) and of GPT-4 by testing them on publicly available datasets, as well as hand-crafted ones, using a novel methodology. In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, either cover only elementary mathematics or are very small. We address this by publicly releasing two new datasets: GHOSTS and miniGHOSTS. These are the first natural-language datasets curated by working researchers in mathematics that (1) aim to cover graduate-level mathematics, (2) provide a holistic overview of the mathematical capabilities of language models, and (3) distinguish multiple dimensions of mathematical reasoning. These datasets also test whether ChatGPT and GPT-4 can be helpful assistants to professional mathematicians by emulating use cases that arise in the daily professional activities of mathematicians. We benchmark the models on a range of fine-grained performance metrics. For advanced mathematics, this is the most detailed evaluation effort to date. We find that ChatGPT can be used most successfully as a mathematical assistant for querying facts, acting as a mathematical search engine and knowledge base interface. GPT-4 can additionally be used for undergraduate-level mathematics but fails on graduate-level difficulty. Contrary to many positive reports in the media about GPT-4 and ChatGPT's exam-solving abilities (a potential case of selection bias), their overall mathematical performance is well below the level of a graduate student. Hence, if your goal is to use ChatGPT to pass a graduate-level math exam, you would be better off copying from your average peer!

Fine-tuning pretrained self-supervised language models is widely adopted for transfer learning to downstream tasks. Fine-tuning can be achieved by freezing gradients of the pretrained network and only updating gradients of a newly added classification layer, or by performing gradient updates on all parameters. Gradual unfreezing makes a trade-off between the two by gradually unfreezing gradients of whole layers during training. This has been an effective strategy to trade-off between storage and training speed with generalization performance. However, it is not clear whether gradually unfreezing layers throughout training is optimal, compared to sparse variants of gradual unfreezing which may improve fine-tuning performance. In this paper, we propose to stochastically mask gradients to regularize pretrained language models for improving overall fine-tuned performance. We introduce GradDrop and variants thereof, a class of gradient sparsification methods that mask gradients during the backward pass, acting as gradient noise. GradDrop is sparse and stochastic unlike gradual freezing. Extensive experiments on the multilingual XGLUE benchmark with XLMR-Large show that GradDrop is competitive against methods that use additional translated data for intermediate pretraining and outperforms standard fine-tuning and gradual unfreezing. A post-analysis shows how GradDrop improves performance with languages it was not trained on, such as under-resourced languages.

Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

北京阿比特科技有限公司