亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give a semidefinite programming characterization of the dual norm of numerical radius for matrices. This characterization yields a new proof of semidefinite characterization of the numerical radius for matrices, which follows from Ando's characterization. We show that the computation of the numerical radius and its dual norm within $\varepsilon$ precision are polynomially time computable in the data and $|\log \varepsilon |$ using the short step, primal interior point method.

相關內容

Stress prediction in porous materials and structures is challenging due to the high computational cost associated with direct numerical simulations. Convolutional Neural Network (CNN) based architectures have recently been proposed as surrogates to approximate and extrapolate the solution of such multiscale simulations. These methodologies are usually limited to 2D problems due to the high computational cost of 3D voxel based CNNs. We propose a novel geometric learning approach based on a Graph Neural Network (GNN) that efficiently deals with three-dimensional problems by performing convolutions over 2D surfaces only. Following our previous developments using pixel-based CNN, we train the GNN to automatically add local fine-scale stress corrections to an inexpensively computed coarse stress prediction in the porous structure of interest. Our method is Bayesian and generates densities of stress fields, from which credible intervals may be extracted. As a second scientific contribution, we propose to improve the extrapolation ability of our network by deploying a strategy of online physics-based corrections. Specifically, we condition the posterior predictions of our probabilistic predictions to satisfy partial equilibrium at the microscale, at the inference stage. This is done using an Ensemble Kalman algorithm, to ensure tractability of the Bayesian conditioning operation. We show that this innovative methodology allows us to alleviate the effect of undesirable biases observed in the outputs of the uncorrected GNN, and improves the accuracy of the predictions in general.

We construct a bipartite generalization of Alon and Szegedy's nearly orthogonal vectors, thereby obtaining strong bounds for several extremal problems involving the Lov\'asz theta function, vector chromatic number, minimum semidefinite rank, nonnegative rank, and extension complexity of polytopes. In particular, we derive a couple of general lower bounds for the vector chromatic number which may be of independent interest.

We numerically investigate the generalized Steklov problem for the modified Helmholtz equation and focus on the relation between its spectrum and the geometric structure of the domain. We address three distinct aspects: (i) the asymptotic behavior of eigenvalues for polygonal domains; (ii) the dependence of the integrals of eigenfunctions on the domain symmetries; and (iii) the localization and exponential decay of Steklov eigenfunctions away from the boundary for smooth shapes and in the presence of corners. For this purpose, we implemented two complementary numerical methods to compute the eigenvalues and eigenfunctions of the associated Dirichlet-to-Neumann operator for various simply-connected planar domains. We also discuss applications of the obtained results in the theory of diffusion-controlled reactions and formulate several conjectures with relevance in spectral geometry.

Canonical correlation analysis (CCA) is a popular statistical technique for exploring relationships between datasets. In recent years, the estimation of sparse canonical vectors has emerged as an important but challenging variant of the CCA problem, with widespread applications. Unfortunately, existing rate-optimal estimators for sparse canonical vectors have high computational cost. We propose a quasi-Bayesian estimation procedure that not only achieves the minimax estimation rate, but also is easy to compute by Markov Chain Monte Carlo (MCMC). The method builds on Tan et al. (2018) and uses a re-scaled Rayleigh quotient function as the quasi-log-likelihood. However, unlike Tan et al. (2018), we adopt a Bayesian framework that combines this quasi-log-likelihood with a spike-and-slab prior to regularize the inference and promote sparsity. We investigate the empirical behavior of the proposed method on both continuous and truncated data, and we demonstrate that it outperforms several state-of-the-art methods. As an application, we use the proposed methodology to maximally correlate clinical variables and proteomic data for better understanding the Covid-19 disease.

Measuring the semantic similarity between two sentences is still an important task. The word mover's distance (WMD) computes the similarity via the optimal alignment between the sets of word embeddings. However, WMD does not utilize word order, making it challenging to distinguish sentences with significant overlaps of similar words, even if they are semantically very different. Here, we attempt to improve WMD by incorporating the sentence structure represented by BERT's self-attention matrix (SAM). The proposed method is based on the Fused Gromov-Wasserstein distance, which simultaneously considers the similarity of the word embedding and the SAM for calculating the optimal transport between two sentences. Experiments demonstrate the proposed method enhances WMD and its variants in paraphrase identification with near-equivalent performance in semantic textual similarity. Our code is available at \url{//github.com/ymgw55/WSMD}.

We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.

We propose a new method for the construction of layer-adapted meshes for singularly perturbed differential equations (SPDEs), based on mesh partial differential equations (MPDEs) that incorporate \emph{a posteriori} solution information. There are numerous studies on the development of parameter robust numerical methods for SPDEs that depend on the layer-adapted mesh of Bakhvalov. In~\citep{HiMa2021}, a novel MPDE-based approach for constructing a generalisation of these meshes was proposed. Like with most layer-adapted mesh methods, the algorithms in that article depended on detailed derivations of \emph{a priori} bounds on the SPDE's solution and its derivatives. In this work we extend that approach so that it instead uses \emph{a posteriori} computed estimates of the solution. We present detailed algorithms for the efficient implementation of the method, and numerical results for the robust solution of two-parameter reaction-convection-diffusion problems, in one and two dimensions. We also provide full FEniCS code for a one-dimensional example.

Lyapunov functions play a vital role in the context of control theory for nonlinear dynamical systems. Besides its classical use for stability analysis, Lyapunov functions also arise in iterative schemes for computing optimal feedback laws such as the well-known policy iteration. In this manuscript, the focus is on the Lyapunov function of a nonlinear autonomous finite-dimensional dynamical system which will be rewritten as an infinite-dimensional linear system using the Koopman or composition operator. Since this infinite-dimensional system has the structure of a weak-* continuous semigroup, in a specially weighted $\mathrm{L}^p$-space one can establish a connection between the solution of an operator Lyapunov equation and the desired Lyapunov function. It will be shown that the solution to this operator equation attains a rapid eigenvalue decay which justifies finite rank approximations with numerical methods. The potential benefit for numerical computations will be demonstrated with two short examples.

The formulation of Bayesian inverse problems involves choosing prior distributions; choices that seem equally reasonable may lead to significantly different conclusions. We develop a computational approach to better understand the impact of the hyperparameters defining the prior on the posterior statistics of the quantities of interest. Our approach relies on global sensitivity analysis (GSA) of Bayesian inverse problems with respect to the hyperparameters defining the prior. This, however, is a challenging problem--a naive double loop sampling approach would require running a prohibitive number of Markov chain Monte Carlo (MCMC) sampling procedures. The present work takes a foundational step in making such a sensitivity analysis practical through (i) a judicious combination of efficient surrogate models and (ii) a tailored importance sampling method. In particular, we can perform accurate GSA of posterior prediction statistics with respect to prior hyperparameters without having to repeat MCMC runs. We demonstrate the effectiveness of the approach on a simple Bayesian linear inverse problem and a nonlinear inverse problem governed by an epidemiological model.

Weights are geometrical degrees of freedom that allow to generalise Lagrangian finite elements. They are defined through integrals over specific supports, well understood in terms of differential forms and integration, and lie within the framework of finite element exterior calculus. In this work we exploit this formalism with the target of identifying supports that are appealing for finite element approximation. To do so, we study the related parametric matrix-sequences, with the matrix order tending to infinity as the mesh size tends to zero. We describe the conditioning and the spectral global behavior in terms of the standard Toeplitz machinery and GLT theory, leading to the identification of the optimal choices for weights. Moreover, we propose and test ad hoc preconditioners, in dependence of the discretization parameters and in connection with conjugate gradient method. The model problem we consider is a onedimensional Laplacian, both with constant and non constant coefficients. Numerical visualizations and experimental tests are reported and critically discussed, demonstrating the advantages of weights-induced bases over standard Lagrangian ones. Open problems and future steps are listed in the conclusive section, especially regarding the multidimensional case.

北京阿比特科技有限公司