亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we analyze NLG automatic metrics based on whether human evaluation aspect is used as context or objective to compute the metrics: (i) Task-agnostic and (ii) Human-aligned. Task-agnostic metrics, such as Perplexity, BLEU, BERTScore, are cost-effective and highly adaptable to diverse NLG tasks, yet they have a weak correlation with human. Human-aligned metrics (CTC, CtrlEval, UniEval) improves correlation level by incorporating desirable human-like qualities as training objective. However, their effectiveness at discerning system-level performance and quality of system outputs remains unclear. We present metric preference checklist as a framework to assess the discriminative power of automatic metrics in three NLG tasks: Text Summarization, Dialogue Response Generation, and Controlled Generation. We show that multi-aspect human-aligned metric (UniEval) is not necessarily dominant over single-aspect human-aligned metrics (CTC, CtrlEval) and task-agnostic metrics (BLEU, BERTScore), particularly when a disagreement between human evaluation aspects is present. We also show particular use cases in which automatic metrics provide a better guidance than human on discriminating system-level performance. Our proposed framework provides access: (i) for verifying whether automatic metrics are faithful to human preference, regardless their correlation level to human; and (ii) for scrutinizing the strengths and limitations of NLG systems, which are often obscured by a standard averaging method of evaluation scores.

相關內容

A good automatic evaluation metric for language generation ideally correlates highly with human judgements of text quality. Yet, there is a dearth of such metrics, which inhibits the rapid and efficient progress of language generators. One exception is the recently proposed Mauve. In theory, Mauve measures an information-theoretic divergence between two probability distributions over strings: one representing the language generator under evaluation; the other representing the true natural language distribution. Mauve's authors argue that its success comes from the qualitative properties of their proposed divergence. Yet in practice, as this divergence is uncomputable, Mauve approximates it by measuring the divergence between multinomial distributions over clusters instead, where cluster assignments are attained by grouping strings based on a pre-trained language model's embeddings. As we show, however, this is not a tight approximation -- in either theory or practice. This begs the question: why does Mauve work so well? In this work, we show that Mauve was right for the wrong reasons, and that its newly proposed divergence is not necessary for its high performance. In fact, classical divergences paired with its proposed cluster-based approximation may actually serve as better evaluation metrics. We finish the paper with a probing analysis; this analysis leads us to conclude that -- by encoding syntactic- and coherence-level features of text, while ignoring surface-level features -- such cluster-based substitutes to string distributions may simply be better for evaluating state-of-the-art language generators.

Geometrical approaches for room acoustics simulation have the advantage of requiring limited computational resources while still achieving a high perceptual plausibility. A common approach is using the image source model for direct and early reflections in connection with further simplified models such as a feedback delay network for the diffuse reverberant tail. When recreating real spaces as virtual acoustic environments using room acoustics simulation, the perceptual relevance of individual parameters in the simulation is unclear. Here we investigate the importance of underlying acoustical measurements and technical evaluation methods to obtain high-quality room acoustics simulations in agreement with dummy-head recordings of a real space. We focus on the role of source directivity. The effect of including measured, modelled, and omnidirectional source directivity in room acoustics simulations was assessed in comparison to the measured reference. Technical evaluation strategies to verify and improve the accuracy of various elements in the simulation processing chain from source, the room properties, to the receiver are presented. Perceptual results from an ABX listening experiment with random speech tokens are shown and compared with technical measures for a ranking of simulation approaches.

Standardness is a popular assumption in the literature on set estimation. It also appears in statistical approaches to topological data analysis, where it is common to assume that the data were sampled from a probability measure that satisfies the standard assumption. Relevant results in this field, such as rates of convergence and confidence sets, depend on the standardness parameter, which in practice may be unknown. In this paper, we review the notion of standardness and its connection to other geometrical restrictions. We prove the almost sure consistency of a plug-in type estimator for the so-called standardness constant, already studied in the literature. We propose a method to correct the bias of the plug-in estimator and corroborate our theoretical findings through a small simulation study. We also show that it is not possible to determine, based on a finite sample, whether a probability measure satisfies the standard assumption.

Food effect summarization from New Drug Application (NDA) is an essential component of product-specific guidance (PSG) development and assessment. However, manual summarization of food effect from extensive drug application review documents is time-consuming, which arouses a need to develop automated methods. Recent advances in large language models (LLMs) such as ChatGPT and GPT-4, have demonstrated great potential in improving the effectiveness of automated text summarization, but its ability regarding the accuracy in summarizing food effect for PSG assessment remains unclear. In this study, we introduce a simple yet effective approach, iterative prompting, which allows one to interact with ChatGPT or GPT-4 more effectively and efficiently through multi-turn interaction. Specifically, we propose a three-turn iterative prompting approach to food effect summarization in which the keyword-focused and length-controlled prompts are respectively provided in consecutive turns to refine the quality of the generated summary. We conduct a series of extensive evaluations, ranging from automated metrics to FDA professionals and even evaluation by GPT-4, on 100 NDA review documents selected over the past five years. We observe that the summary quality is progressively improved throughout the process. Moreover, we find that GPT-4 performs better than ChatGPT, as evaluated by FDA professionals (43% vs. 12%) and GPT-4 (64% vs. 35%). Importantly, all the FDA professionals unanimously rated that 85% of the summaries generated by GPT-4 are factually consistent with the golden reference summary, a finding further supported by GPT-4 rating of 72% consistency. These results strongly suggest a great potential for GPT-4 to draft food effect summaries that could be reviewed by FDA professionals, thereby improving the efficiency of PSG assessment cycle and promoting the generic drug product development.

An accurate and substantial dataset is essential for training a reliable and well-performing model. However, even manually annotated datasets contain label errors, not to mention automatically labeled ones. Previous methods for label denoising have primarily focused on detecting outliers and their permanent removal - a process that is likely to over- or underfilter the dataset. In this work, we propose AGRA: a new method for learning with noisy labels by using Adaptive GRAdient-based outlier removal. Instead of cleaning the dataset prior to model training, the dataset is dynamically adjusted during the training process. By comparing the aggregated gradient of a batch of samples and an individual example gradient, our method dynamically decides whether a corresponding example is helpful for the model at this point or is counter-productive and should be left out for the current update. Extensive evaluation on several datasets demonstrates AGRA's effectiveness, while a comprehensive results analysis supports our initial hypothesis: permanent hard outlier removal is not always what model benefits the most from.

Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution given its unnormalized density function. This algorithm relies on a sequence of interpolating distributions bridging the target to an initial tractable distribution such as the well-known geometric mean path of unnormalized distributions which is assumed to be suboptimal in general. In this paper, we prove that the geometric annealing corresponds to the distribution path that minimizes the KL divergence between the current particle distribution and the desired target when the feasible change in the particle distribution is constrained. Following this observation, we derive the constant rate discretization schedule for this annealing sequence, which adjusts the schedule to the difficulty of moving samples between the initial and the target distributions. We further extend our results to $f$-divergences and present the respective dynamics of annealing sequences based on which we propose the Constant Rate AIS (CR-AIS) algorithm and its efficient implementation for $\alpha$-divergences. We empirically show that CR-AIS performs well on multiple benchmark distributions while avoiding the computationally expensive tuning loop in existing Adaptive AIS.

Artistic authoring of 3D environments is a laborious enterprise that also requires skilled content creators. There have been impressive improvements in using machine learning to address different aspects of generating 3D content, such as generating meshes, arranging geometry, synthesizing textures, etc. In this paper we develop a model to generate Bidirectional Reflectance Distribution Functions (BRDFs) from descriptive textual prompts. BRDFs are four dimensional probability distributions that characterize the interaction of light with surface materials. They are either represented parametrically, or by tabulating the probability density associated with every pair of incident and outgoing angles. The former lends itself to artistic editing while the latter is used when measuring the appearance of real materials. Numerous works have focused on hypothesizing BRDF models from images of materials. We learn a mapping from textual descriptions of materials to parametric BRDFs. Our model is first trained using a semi-supervised approach before being tuned via an unsupervised scheme. Although our model is general, in this paper we specifically generate parameters for MDL materials, conditioned on natural language descriptions, within NVIDIA's Omniverse platform. This enables use cases such as real-time text prompts to change materials of objects in 3D environments such as "dull plastic" or "shiny iron". Since the output of our model is a parametric BRDF, rather than an image of the material, it may be used to render materials using any shape under arbitrarily specified viewing and lighting conditions.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

北京阿比特科技有限公司