Explanations in XAI are typically developed by AI experts and focus on algorithmic transparency and the inner workings of AI systems. Research has shown that such explanations do not meet the needs of users who do not have AI expertise. As a result, explanations are often ineffective in making system decisions interpretable and understandable. We aim to strengthen a socio-technical view of AI by following a Human-Centered Explainable Artificial Intelligence (HC-XAI) approach, which investigates the explanation needs of end-users (i.e., subject matter experts and lay users) in specific usage contexts. One of the most influential works in this area is the XAI Question Bank (XAIQB) by Liao et al. The authors propose a set of questions that end-users might ask when using an AI system, which in turn is intended to help developers and designers identify and address explanation needs. Although the XAIQB is widely referenced, there are few reports of its use in practice. In particular, it is unclear to what extent the XAIQB sufficiently captures the explanation needs of end-users and what potential problems exist in the practical application of the XAIQB. To explore these open questions, we used the XAIQB as the basis for analyzing 12 think-aloud software explorations with subject matter experts. We investigated the suitability of the XAIQB as a tool for identifying explanation needs in a specific usage context. Our analysis revealed a number of explanation needs that were missing from the question bank, but that emerged repeatedly as our study participants interacted with an AI system. We also found that some of the XAIQB questions were difficult to distinguish and required interpretation during use. Our contribution is an extension of the XAIQB with 11 new questions. In addition, we have expanded the descriptions of all new and existing questions to facilitate their use.
Surjectivity and injectivity are the most fundamental problems in cellular automata (CA). We simplify and modify Amoroso's algorithm into optimum and make it compatible with fixed, periodic and reflective boundaries. A new algorithm (injectivity tree algorithm) for injectivity is also proposed. After our theoretic analysis and experiments, our algorithm for injectivity can save much space and 90\% or even more time compared with Amoroso's algorithm for injectivity so that it can support the decision of CA with larger neighborhood sizes. At last, we prove that the reversibility with the periodic boundary and global injectivity of one-dimensional CA is equivalent.
With Polycystic Kidney Disease (PKD) potentially leading to fatal complications in patients due to the formation of cysts in the kidneys, early detection of PKD is crucial for effective management of the condition. However, the various patient-specific factors that play a role in the diagnosis make it an intricate puzzle for clinicians to solve. Therefore, in this study, we aim to utilize a deep learning-based approach for early disease detection. The devised neural network can achieve accurate and robust predictions for possible PKD in patients by analyzing patient gene expressions.
The edge computing paradigm helps handle the Internet of Things (IoT) generated data in proximity to its source. Challenges occur in transferring, storing, and processing this rapidly growing amount of data on resource-constrained edge devices. Symbolic Representation (SR) algorithms are promising solutions to reduce the data size by converting actual raw data into symbols. Also, they allow data analytics (e.g., anomaly detection and trend prediction) directly on symbols, benefiting large classes of edge applications. However, existing SR algorithms are centralized in design and work offline with batch data, which is infeasible for real-time cases. We propose SymED - Symbolic Edge Data representation method, i.e., an online, adaptive, and distributed approach for symbolic representation of data on edge. SymED is based on the Adaptive Brownian Bridge-based Aggregation (ABBA), where we assume low-powered IoT devices do initial data compression (senders) and the more robust edge devices do the symbolic conversion (receivers). We evaluate SymED by measuring compression performance, reconstruction accuracy through Dynamic Time Warping (DTW) distance, and computational latency. The results show that SymED is able to (i) reduce the raw data with an average compression rate of 9.5%; (ii) keep a low reconstruction error of 13.25 in the DTW space; (iii) simultaneously provide real-time adaptability for online streaming IoT data at typical latencies of 42ms per symbol, reducing the overall network traffic.
In the last decade, the Winograd Schema Challenge (WSC) has become a central aspect of the research community as a novel litmus test. Consequently, the WSC has spurred research interest because it can be seen as the means to understand human behavior. In this regard, the development of new techniques has made possible the usage of Winograd schemas in various fields, such as the design of novel forms of CAPTCHAs. Work from the literature that established a baseline for human adult performance on the WSC has shown that not all schemas are the same, meaning that they could potentially be categorized according to their perceived hardness for humans. In this regard, this \textit{hardness-metric} could be used in future challenges or in the WSC CAPTCHA service to differentiate between Winograd schemas. Recent work of ours has shown that this could be achieved via the design of an automated system that is able to output the hardness-indexes of Winograd schemas, albeit with limitations regarding the number of schemas it could be applied on. This paper adds to previous research by presenting a new system that is based on Machine Learning (ML), able to output the hardness of any Winograd schema faster and more accurately than any other previously used method. Our developed system, which works within two different approaches, namely the random forest and deep learning (LSTM-based), is ready to be used as an extension of any other system that aims to differentiate between Winograd schemas, according to their perceived hardness for humans. At the same time, along with our developed system we extend previous work by presenting the results of a large-scale experiment that shows how human performance varies across Winograd schemas.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.