亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the last decade, the Winograd Schema Challenge (WSC) has become a central aspect of the research community as a novel litmus test. Consequently, the WSC has spurred research interest because it can be seen as the means to understand human behavior. In this regard, the development of new techniques has made possible the usage of Winograd schemas in various fields, such as the design of novel forms of CAPTCHAs. Work from the literature that established a baseline for human adult performance on the WSC has shown that not all schemas are the same, meaning that they could potentially be categorized according to their perceived hardness for humans. In this regard, this \textit{hardness-metric} could be used in future challenges or in the WSC CAPTCHA service to differentiate between Winograd schemas. Recent work of ours has shown that this could be achieved via the design of an automated system that is able to output the hardness-indexes of Winograd schemas, albeit with limitations regarding the number of schemas it could be applied on. This paper adds to previous research by presenting a new system that is based on Machine Learning (ML), able to output the hardness of any Winograd schema faster and more accurately than any other previously used method. Our developed system, which works within two different approaches, namely the random forest and deep learning (LSTM-based), is ready to be used as an extension of any other system that aims to differentiate between Winograd schemas, according to their perceived hardness for humans. At the same time, along with our developed system we extend previous work by presenting the results of a large-scale experiment that shows how human performance varies across Winograd schemas.

相關內容

As language models become increasingly integrated into our digital lives, Personalized Text Generation (PTG) has emerged as a pivotal component with a wide range of applications. However, the bias inherent in user written text, often used for PTG model training, can inadvertently associate different levels of linguistic quality with users' protected attributes. The model can inherit the bias and perpetuate inequality in generating text w.r.t. users' protected attributes, leading to unfair treatment when serving users. In this work, we investigate fairness of PTG in the context of personalized explanation generation for recommendations. We first discuss the biases in generated explanations and their fairness implications. To promote fairness, we introduce a general framework to achieve measure-specific counterfactual fairness in explanation generation. Extensive experiments and human evaluations demonstrate the effectiveness of our method.

Code Large Language Models (Code LLMs) are being increasingly employed in real-life applications, so evaluating them is critical. While the general accuracy of Code LLMs on individual tasks has been extensively evaluated, their self-consistency across different tasks is overlooked. Intuitively, a trustworthy model should be self-consistent when generating natural language specifications for its own code and generating code for its own specifications. Failure to preserve self-consistency reveals a lack of understanding of the shared semantics underlying natural language and programming language, and therefore undermines the trustworthiness of a model. In this paper, we first formally define the self-consistency of Code LLMs and then design a framework, IdentityChain, which effectively and efficiently evaluates the self-consistency and general accuracy of a model at the same time. We study eleven Code LLMs and show that they fail to preserve self-consistency, which is indeed a distinct aspect from general accuracy. Furthermore, we show that IdentityChain can be used as a model debugging tool to expose weaknesses of Code LLMs by demonstrating three major weaknesses that we identify in current models using IdentityChain. Our code is available at //github.com/marcusm117/IdentityChain.

Neural Radiance Fields (NeRF) is a novel implicit 3D reconstruction method that shows immense potential and has been gaining increasing attention. It enables the reconstruction of 3D scenes solely from a set of photographs. However, its real-time rendering capability, especially for interactive real-time rendering of large-scale scenes, still has significant limitations. To address these challenges, in this paper, we propose a novel neural rendering system called UE4-NeRF, specifically designed for real-time rendering of large-scale scenes. We partitioned each large scene into different sub-NeRFs. In order to represent the partitioned independent scene, we initialize polygonal meshes by constructing multiple regular octahedra within the scene and the vertices of the polygonal faces are continuously optimized during the training process. Drawing inspiration from Level of Detail (LOD) techniques, we trained meshes of varying levels of detail for different observation levels. Our approach combines with the rasterization pipeline in Unreal Engine 4 (UE4), achieving real-time rendering of large-scale scenes at 4K resolution with a frame rate of up to 43 FPS. Rendering within UE4 also facilitates scene editing in subsequent stages. Furthermore, through experiments, we have demonstrated that our method achieves rendering quality comparable to state-of-the-art approaches. Project page: //jamchaos.github.io/UE4-NeRF/.

The emergence of Generative Artificial Intelligence (G-AI) has changed the landscape of creative arts with its power to compose novel artwork and thus brought ethical concerns. Despite the efforts by prior works to address these concerns from technical and societal perspectives, there exists little discussion on this topic from an HCI point of view, considering the artists as human factors. We sought to investigate the impact of G-AI on artists, understanding the relationship between artists and G-AI, in order to motivate the underlying HCI research. We conducted semi-structured interviews with artists ($N=25$) from diverse artistic disciplines involved with G-AI in their artistic creation. We found (1) a dilemma among the artists, (2) a disparity in the understanding of G-AI between the artists and the AI developers(3) a tendency to oppose G-AI among the artists. We discuss the future opportunities of HCI research to tackle the problems identified from the interviews.

Social Explainable AI (SAI) is a new direction in artificial intelligence that emphasises decentralisation, transparency, social context, and focus on the human users. SAI research is still at an early stage. Consequently, it concentrates on delivering the intended functionalities, but largely ignores the possibility of unwelcome behaviours due to malicious or erroneous activity. We propose that, in order to capture the breadth of relevant aspects, one can use models and logics of strategic ability, that have been developed in multi-agent systems. Using the STV model checker, we take the first step towards the formal modelling and verification of SAI environments, in particular of their resistance to various types of attacks by compromised AI modules.

Data Augmentation (DA) has emerged as an indispensable strategy in Time Series Classification (TSC), primarily due to its capacity to amplify training samples, thereby bolstering model robustness, diversifying datasets, and curtailing overfitting. However, the current landscape of DA in TSC is plagued with fragmented literature reviews, nebulous methodological taxonomies, inadequate evaluative measures, and a dearth of accessible, user-oriented tools. In light of these challenges, this study embarks on an exhaustive dissection of DA methodologies within the TSC realm. Our initial approach involved an extensive literature review spanning a decade, revealing that contemporary surveys scarcely capture the breadth of advancements in DA for TSC, prompting us to meticulously analyze over 100 scholarly articles to distill more than 60 unique DA techniques. This rigorous analysis precipitated the formulation of a novel taxonomy, purpose-built for the intricacies of DA in TSC, categorizing techniques into five principal echelons: Transformation-Based, Pattern-Based, Generative, Decomposition-Based, and Automated Data Augmentation. Our taxonomy promises to serve as a robust navigational aid for scholars, offering clarity and direction in method selection. Addressing the conspicuous absence of holistic evaluations for prevalent DA techniques, we executed an all-encompassing empirical assessment, wherein upwards of 15 DA strategies were subjected to scrutiny across 8 UCR time-series datasets, employing ResNet and a multi-faceted evaluation paradigm encompassing Accuracy, Method Ranking, and Residual Analysis, yielding a benchmark accuracy of 88.94 +- 11.83%. Our investigation underscored the inconsistent efficacies of DA techniques, with...

The advent of Large Language Models (LLMs) has shown the potential to improve relevance and provide direct answers in web searches. However, challenges arise in validating the reliability of generated results and the credibility of contributing sources, due to the limitations of traditional information retrieval algorithms and the LLM hallucination problem. Aiming to create a "PageRank" for the LLM era, we strive to transform LLM into a relevant, responsible, and trustworthy searcher. We propose a novel generative retrieval framework leveraging the knowledge of LLMs to foster a direct link between queries and online sources. This framework consists of three core modules: Generator, Validator, and Optimizer, each focusing on generating trustworthy online sources, verifying source reliability, and refining unreliable sources, respectively. Extensive experiments and evaluations highlight our method's superior relevance, responsibility, and trustfulness against various SOTA methods.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司