亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph neural network (GNN) based methods have saturated the field of recommender systems. The gains of these systems have been significant, showing the advantages of interpreting data through a network structure. However, despite the noticeable benefits of using graph structures in recommendation tasks, this representational form has also bred new challenges which exacerbate the complexity of mitigating algorithmic bias. When GNNs are integrated into downstream tasks, such as recommendation, bias mitigation can become even more difficult. Furthermore, the intractability of applying existing methods of fairness promotion to large, real world datasets places even more serious constraints on mitigation attempts. Our work sets out to fill in this gap by taking an existing method for promoting individual fairness on graphs and extending it to support mini-batch, or sub-sample based, training of a GNN, thus laying the groundwork for applying this method to a downstream recommendation task. We evaluate two popular GNN methods: Graph Convolutional Network (GCN), which trains on the entire graph, and GraphSAGE, which uses probabilistic random walks to create subgraphs for mini-batch training, and assess the effects of sub-sampling on individual fairness. We implement an individual fairness notion called \textit{REDRESS}, proposed by Dong et al., which uses rank optimization to learn individual fair node, or item, embeddings. We empirically show on two real world datasets that GraphSAGE is able to achieve, not just, comparable accuracy, but also, improved fairness as compared with the GCN model. These finding have consequential ramifications to individual fairness promotion, GNNs, and in downstream form, recommender systems, showing that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.

相關內容

In this paper, we propose to use the concept of local fairness for auditing and ranking redistricting plans. Given a redistricting plan, a deviating group is a population-balanced contiguous region in which a majority of individuals are of the same interest and in the minority of their respective districts; such a set of individuals have a justified complaint with how the redistricting plan was drawn. A redistricting plan with no deviating groups is called locally fair. We show that the problem of auditing a given plan for local fairness is NP-complete. We present an MCMC approach for auditing as well as ranking redistricting plans. We also present a dynamic programming based algorithm for the auditing problem that we use to demonstrate the efficacy of our MCMC approach. Using these tools, we test local fairness on real-world election data, showing that it is indeed possible to find plans that are almost or exactly locally fair. Further, we show that such plans can be generated while sacrificing very little in terms of compactness and existing fairness measures such as competitiveness of the districts or seat shares of the plans.

To investigate the structure of individual differences in performance on behavioral tasks, Haaf and Rouder (2017) developed a class of hierarchical Bayesian mixed models with varying levels of constraint on the individual effects. The models are then compared via Bayes factors, telling us which model best predicts the observed data. One common criticism of their method is that the observed data are assumed to be drawn from a normal distribution. However, for most cognitive tasks, the primary measure of performance is a response time, the distribution of which is well known to not be normal. In this paper, I investigate the assumption of normality for two datasets in numerical cognition. Specifically, I show that using a shifted lognormal model for the response times does not change the overall pattern of inference. Further, since the model-estimated effects are now on a logarithmic scale, the interpretation of the modeling becomes more difficult, particularly because the estimated effect is now multiplicative rather than additive. As a result, I recommend that even though response times are not normally distributed in general, the simplification afforded by the Haaf and Rouder (2017) approach provides a pragmatic approach to modeling individual differences in behavioral tasks.

Complex time-varying systems are often studied by abstracting away from the dynamics of individual components to build a model of the population-level dynamics from the start. However, when building a population-level description, it can be easy to lose sight of each individual and how they contribute to the larger picture. In this paper, we present a novel transformer architecture for learning from time-varying data that builds descriptions of both the individual as well as the collective population dynamics. Rather than combining all of our data into our model at the onset, we develop a separable architecture that operates on individual time-series first before passing them forward; this induces a permutation-invariance property and can be used to transfer across systems of different size and order. After demonstrating that our model can be applied to successfully recover complex interactions and dynamics in many-body systems, we apply our approach to populations of neurons in the nervous system. On neural activity datasets, we show that our model not only yields robust decoding performance, but also provides impressive performance in transfer across recordings of different animals without any neuron-level correspondence. By enabling flexible pre-training that can be transferred to neural recordings of different size and order, our work provides a first step towards creating a foundation model for neural decoding.

As machine learning becomes more widely adopted across domains, it is critical that researchers and ML engineers think about the inherent biases in the data that may be perpetuated by the model. Recently, many studies have shown that such biases are also imbibed in Graph Neural Network (GNN) models if the input graph is biased, potentially to the disadvantage of underserved and underrepresented communities. In this work, we aim to mitigate the bias learned by GNNs by jointly optimizing two different loss functions: one for the task of link prediction and one for the task of demographic parity. We further implement three different techniques inspired by graph modification approaches: the Global Fairness Optimization (GFO), Constrained Fairness Optimization (CFO), and Fair Edge Weighting (FEW) models. These techniques mimic the effects of changing underlying graph structures within the GNN and offer a greater degree of interpretability over more integrated neural network methods. Our proposed models emulate microscopic or macroscopic edits to the input graph while training GNNs and learn node embeddings that are both accurate and fair under the context of link recommendations. We demonstrate the effectiveness of our approach on four real world datasets and show that we can improve the recommendation fairness by several factors at negligible cost to link prediction accuracy.

Recently, privacy issues in web services that rely on users' personal data have raised great attention. Unlike existing privacy-preserving technologies such as federated learning and differential privacy, we explore another way to mitigate users' privacy concerns, giving them control over their own data. For this goal, we propose a privacy aware recommendation framework that gives users delicate control over their personal data, including implicit behaviors, e.g., clicks and watches. In this new framework, users can proactively control which data to disclose based on the trade-off between anticipated privacy risks and potential utilities. Then we study users' privacy decision making under different data disclosure mechanisms and recommendation models, and how their data disclosure decisions affect the recommender system's performance. To avoid the high cost of real-world experiments, we apply simulations to study the effects of our proposed framework. Specifically, we propose a reinforcement learning algorithm to simulate users' decisions (with various sensitivities) under three proposed platform mechanisms on two datasets with three representative recommendation models. The simulation results show that the platform mechanisms with finer split granularity and more unrestrained disclosure strategy can bring better results for both end users and platforms than the "all or nothing" binary mechanism adopted by most real-world applications. It also shows that our proposed framework can effectively protect users' privacy since they can obtain comparable or even better results with much less disclosed data.

Recommender systems can be characterized as software solutions that provide users convenient access to relevant content. Traditionally, recommender systems research predominantly focuses on developing machine learning algorithms that aim to predict which content is relevant for individual users. In real-world applications, however, optimizing the accuracy of such relevance predictions as a single objective in many cases is not sufficient. Instead, multiple and often competing objectives have to be considered, leading to a need for more research in multi-objective recommender systems. We can differentiate between several types of such competing goals, including (i) competing recommendation quality objectives at the individual and aggregate level, (ii) competing objectives of different involved stakeholders, (iii) long-term vs. short-term objectives, (iv) objectives at the user interface level, and (v) system level objectives. In this paper we review these types of multi-objective recommendation settings and outline open challenges in this area.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

北京阿比特科技有限公司