亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we address the problem of modeling data with periodic autoregressive (PAR) time series and additive noise. In most cases, the data are processed assuming a noise-free model (i.e., without additive noise), which is not a realistic assumption in real life. The first two steps in PAR model identification are order selection and period estimation, so the main focus is on these issues. Finally, the model should be validated, so a procedure for analyzing the residuals, which are considered here as multidimensional vectors, is proposed. Both order and period selection, as well as model validation, are addressed by using the characteristic function (CF) of the residual series. The CF is used to obtain the probability density function, which is utilized in the information criterion and for residuals distribution testing. To complete the PAR model analysis, the procedure for estimating the coefficients is necessary. However, this issue is only mentioned here as it is a separate task (under consideration in parallel). The presented methodology can be considered as the general framework for analyzing data with periodically non-stationary characteristics disturbed by finite-variance external noise. The original contribution is in the selection of the optimal model order and period identification, as well as the analysis of residuals. All these findings have been inspired by our previous work on machine condition monitoring that used PAR modeling

相關內容

In this paper we consider from two different aspects the proximal alternating direction method of multipliers (ADMM) in Hilbert spaces. We first consider the application of the proximal ADMM to solve well-posed linearly constrained two-block separable convex minimization problems in Hilbert spaces and obtain new and improved non-ergodic convergence rate results, including linear and sublinear rates under certain regularity conditions. We next consider proximal ADMM as a regularization method for solving linear ill-posed inverse problems in Hilbert spaces. When the data is corrupted by additive noise, we establish, under a benchmark source condition, a convergence rate result in terms of the noise level when the number of iteration is properly chosen.

In this paper, we aim to address the open questions raised in various recent papers regarding characterization of circulant graphs with three or four distinct eigenvalues in their spectra. Our focus is on providing characterizations and constructing classes of graphs falling under this specific category. We present a characterization of circulant graphs with prime number order and unitary Cayley graphs with arbitrary order, both of which possess spectra displaying three or four distinct eigenvalues. Various constructions of circulant graphs with composite orders are provided whose spectra consist of four distinct eigenvalues. These constructions primarily utilize specific subgraphs of circulant graphs that already possess two or three eigenvalues in their spectra, employing graph operations like the tensor product, the union, and the complement. Finally, we characterize the iterated line graphs of unitary Cayley graphs whose spectra contain three or four distinct eigenvalues, and we show their non-circulant nature.

In this paper, we investigate the behavior of gradient descent algorithms in physics-informed machine learning methods like PINNs, which minimize residuals connected to partial differential equations (PDEs). Our key result is that the difficulty in training these models is closely related to the conditioning of a specific differential operator. This operator, in turn, is associated to the Hermitian square of the differential operator of the underlying PDE. If this operator is ill-conditioned, it results in slow or infeasible training. Therefore, preconditioning this operator is crucial. We employ both rigorous mathematical analysis and empirical evaluations to investigate various strategies, explaining how they better condition this critical operator, and consequently improve training.

In this paper we analyze the weighted essentially non-oscillatory (WENO) schemes in the finite volume framework by examining the first step of the explicit third-order total variation diminishing Runge-Kutta method. The rationale for the improved performance of the finite volume WENO-M, WENO-Z and WENO-ZR schemes over WENO-JS in the first time step is that the nonlinear weights corresponding to large errors are adjusted to increase the accuracy of numerical solutions. Based on this analysis, we propose novel Z-type nonlinear weights of the finite volume WENO scheme for hyperbolic conservation laws. Instead of taking the difference of the smoothness indicators for the global smoothness indicator, we employ the logarithmic function with tuners to ensure that the numerical dissipation is reduced around discontinuities while the essentially non-oscillatory property is preserved. The proposed scheme does not necessitate substantial extra computational expenses. Numerical examples are presented to demonstrate the capability of the proposed WENO scheme in shock capturing.

In this paper we propose polarized consensus-based dynamics in order to make consensus-based optimization (CBO) and sampling (CBS) applicable for objective functions with several global minima or distributions with many modes, respectively. For this, we ``polarize'' the dynamics with a localizing kernel and the resulting model can be viewed as a bounded confidence model for opinion formation in the presence of common objective. Instead of being attracted to a common weighted mean as in the original consensus-based methods, which prevents the detection of more than one minimum or mode, in our method every particle is attracted to a weighted mean which gives more weight to nearby particles. We prove that in the mean-field regime the polarized CBS dynamics are unbiased for Gaussian targets. We also prove that in the zero temperature limit and for sufficiently well-behaved strongly convex objectives the solution of the Fokker--Planck equation converges in the Wasserstein-2 distance to a Dirac measure at the minimizer. Finally, we propose a computationally more efficient generalization which works with a predefined number of clusters and improves upon our polarized baseline method for high-dimensional optimization.

In this paper, we aim to address the problem of channel robustness in speech countermeasure (CM) systems, which are used to distinguish synthetic speech from human natural speech. On the basis of two hypotheses, we suggest an approach for perturbing phase information during the training of time-domain CM systems. Communication networks often employ lossy compression codec that encodes only magnitude information, therefore heavily altering phase information. Also, state-of-the-art CM systems rely on phase information to identify spoofed speech. Thus, we believe the information loss in the phase domain induced by lossy compression codec degrades the performance of the unseen channel. We first establish the dependence of time-domain CM systems on phase information by perturbing phase in evaluation, showing strong degradation. Then, we demonstrated that perturbing phase during training leads to a significant performance improvement, whereas perturbing magnitude leads to further degradation.

While the test-negative design (TND), which is routinely used for monitoring seasonal flu vaccine effectiveness (VE), has recently become integral to COVID-19 vaccine surveillance, it is susceptible to selection bias due to outcome-dependent sampling. Some studies have addressed the identifiability and estimation of causal parameters under the TND, but efficiency bounds for nonparametric estimators of the target parameter under the unconfoundedness assumption have not yet been investigated. We propose a one-step doubly robust and locally efficient estimator called TNDDR (TND doubly robust), which utilizes sample splitting and can incorporate machine learning techniques to estimate the nuisance functions. We derive the efficient influence function (EIF) for the marginal expectation of the outcome under a vaccination intervention, explore the von Mises expansion, and establish the conditions for $\sqrt{n}-$consistency, asymptotic normality and double robustness of TNDDR. The proposed TNDDR is supported by both theoretical and empirical justifications, and we apply it to estimate COVID-19 VE in an administrative dataset of community-dwelling older people (aged $\geq 60$y) in the province of Qu\'ebec, Canada.

Permutation pattern-avoidance is a central concept of both enumerative and extremal combinatorics. In this paper we study the effect of permutation pattern-avoidance on the complexity of optimization problems. In the context of the dynamic optimality conjecture (Sleator, Tarjan, STOC 1983), Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak (FOCS 2015) conjectured that the amortized access cost of an optimal binary search tree (BST) is $O(1)$ whenever the access sequence avoids some fixed pattern. They showed a bound of $2^{\alpha{(n)}^{O(1)}}$, which was recently improved to $2^{\alpha{(n)}(1+o(1))}$ by Chalermsook, Pettie, and Yingchareonthawornchai (2023); here $n$ is the BST size and $\alpha(\cdot)$ the inverse-Ackermann function. In this paper we resolve the conjecture, showing a tight $O(1)$ bound. This indicates a barrier to dynamic optimality: any candidate online BST (e.g., splay trees or greedy trees) must match this optimum, but current analysis techniques only give superconstant bounds. More broadly, we argue that the easiness of pattern-avoiding input is a general phenomenon, not limited to BSTs or even to data structures. To illustrate this, we show that when the input avoids an arbitrary, fixed, a priori unknown pattern, one can efficiently compute a $k$-server solution of $n$ requests from a unit interval, with total cost $n^{O(1/\log k)}$, in contrast to the worst-case $\Theta(n/k)$ bound; and a traveling salesman tour of $n$ points from a unit box, of length $O(\log{n})$, in contrast to the worst-case $\Theta(\sqrt{n})$ bound; similar results hold for the euclidean minimum spanning tree, Steiner tree, and nearest-neighbor graphs. We show both results to be tight. Our techniques build on the Marcus-Tardos proof of the Stanley-Wilf conjecture, and on the recently emerging concept of twin-width; we believe our techniques to be more generally applicable.

The investigation of mixture models is a key to understand and visualize the distribution of multivariate data. Most mixture models approaches are based on likelihoods, and are not adapted to distribution with finite support or without a well-defined density function. This study proposes the Augmented Quantization method, which is a reformulation of the classical quantization problem but which uses the p-Wasserstein distance. This metric can be computed in very general distribution spaces, in particular with varying supports. The clustering interpretation of quantization is revisited in a more general framework. The performance of Augmented Quantization is first demonstrated through analytical toy problems. Subsequently, it is applied to a practical case study involving river flooding, wherein mixtures of Dirac and Uniform distributions are built in the input space, enabling the identification of the most influential variables.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

北京阿比特科技有限公司