亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The propagation of internal gravity waves in stratified media, such as those found in ocean basins and lakes, leads to the development of geometrical patterns called "attractors". These structures accumulate much of the wave energy and make the fluid flow highly singular. In more analytical terms, the cause of this phenomenon has been attributed to the presence of a continuous spectrum in some nonlocal zeroth-order pseudo-differential operators. In this work, we analyze the generation of these attractors from a numerical analysis perspective. First, we propose a high-order pseudo-spectral method to solve the evolution problem (whose long-term behaviour is known to be not square-integrable). Then, we use similar tools to discretize the corresponding eigenvalue problem. Since the eigenvalues are embedded in a continuous spectrum, we compute them using viscous approximations. Finally, we explore the effect that the embedded eigenmodes have on the long-term evolution of the system.

相關內容

The aim of this note is to state a couple of general results about the properties of the penalized maximum likelihood estimators (pMLE) and of the posterior distribution for parametric models in a non-asymptotic setup and for possibly large or even infinite parameter dimension. We consider a special class of stochastically linear smooth (SLS) models satisfying two major conditions: the stochastic component of the log-likelihood is linear in the model parameter, while the expected log-likelihood is a smooth function. The main results simplify a lot if the expected log-likelihood is concave. For the pMLE, we establish a number of finite sample bounds about its concentration and large deviations as well as the Fisher and Wilks expansion. The later results extend the classical asymptotic Fisher and Wilks Theorems about the MLE to the non-asymptotic setup with large parameter dimension which can depend on the sample size. For the posterior distribution, our main result states a Gaussian approximation of the posterior which can be viewed as a finite sample analog of the prominent Bernstein--von Mises Theorem. In all bounds, the remainder is given explicitly and can be evaluated in terms of the effective sample size and effective parameter dimension. The results are dimension and coordinate free. In spite of generality, all the presented bounds are nearly sharp and the classical asymptotic results can be obtained as simple corollaries. Interesting cases of logit regression and of estimation of a log-density with smooth or truncation priors are used to specify the results and to explain the main notions.

Practitioners are often left tuning Metropolis-Hastings algorithms by trial and error or using optimal scaling guidelines to avoid poor empirical performance. We develop lower bounds on the convergence rates of geometrically ergodic accept-reject-based Markov chains (i.e. Metropolis-Hastings, non-reversible Metropolis-Hastings) to study their computational complexity. If the target density concentrates with a parameter $n$ (e.g. Bayesian posterior concentration, Laplace approximations), we show the convergence rate can tend to $1$ exponentially fast if the tuning parameters do not depend carefully on $n$. We show this is the case for random-walk Metropolis in Bayesian logistic regression with Zellner's g-prior when the dimension and sample size $d/n \to \gamma \in (0, 1)$. We focus on more general target densities using a special class of Metropolis-Hastings algorithms with a Gaussian proposal (e.g. random walk and Metropolis-adjusted Langevin algorithms) where we give more general conditions. An application to flat prior Bayesian logistic regression as $n \to \infty$ is studied. We also develop lower bounds in the Wasserstein distances which have become popular in the convergence analysis of high-dimensional MCMC algorithms with similar conclusions.

High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.

Integrated information theory (IIT) is a theoretical framework that provides a quantitative measure to estimate when a physical system is conscious, its degree of consciousness, and the complexity of the qualia space that the system is experiencing. Formally, IIT rests on the assumption that if a surrogate physical system can fully embed the phenomenological properties of consciousness, then the system properties must be constrained by the properties of the qualia being experienced. Following this assumption, IIT represents the physical system as a network of interconnected elements that can be thought of as a probabilistic causal graph, $\mathcal{G}$, where each node has an input-output function and all the graph is encoded in a transition probability matrix. Consequently, IIT's quantitative measure of consciousness, $\Phi$, is computed with respect to the transition probability matrix and the present state of the graph. In this paper, we provide a random search algorithm that is able to optimize $\Phi$ in order to investigate, as the number of nodes increases, the structure of the graphs that have higher $\Phi$. We also provide arguments that show the difficulties of applying more complex black-box search algorithms, such as Bayesian optimization or metaheuristics, in this particular problem. Additionally, we suggest specific research lines for these techniques to enhance the search algorithm that guarantees maximal $\Phi$.

In this work we connect two notions: That of the nonparametric mode of a probability measure, defined by asymptotic small ball probabilities, and that of the Onsager--Machlup functional, a generalized density also defined via asymptotic small ball probabilities. We show that in a separable Hilbert space setting and under mild conditions on the likelihood, the modes of a Bayesian posterior distribution based upon a Gaussian prior agree with the minimizers of its Onsager--Machlup functional. We apply this result to inverse problems and derive conditions on the forward mapping under which this variational characterization of posterior modes holds. Our results show rigorously that in the limit case of infinite-dimensional data corrupted by additive Gaussian or Laplacian noise, nonparametric MAP estimation is equivalent to Tikhonov--Phillips regularization. In comparison with the work of Dashti, Law, Stuart, and Voss (2013), the assumptions on the likelihood are relaxed so that they cover in particular the important case of Gaussian process noise. We illustrate our results by applying them to a severely ill-posed linear problem with Laplacian noise, where we express the MAP estimator analytically and study its rate of convergence.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

北京阿比特科技有限公司