Predictive algorithms, such as deep neural networks (DNNs), are used in many domain sciences to directly estimate internal parameters of interest in simulator-based models, especially in settings where the observations include images or other complex high-dimensional data. In parallel, modern neural density estimators, such as normalizing flows, are becoming increasingly popular for uncertainty quantification, especially when both parameters and observations are high-dimensional. However, parameter inference is an inverse problem and not a prediction task; thus, an open challenge is to construct conditionally valid and precise confidence regions, with a guaranteed probability of covering the true parameters of the data-generating process, no matter what the (unknown) parameter values are, and without relying on large-sample theory. Many simulator-based inference (SBI) methods are indeed known to produce biased or overly confident parameter regions, yielding misleading uncertainty estimates. This paper presents WALDO, a novel method for constructing confidence regions with finite-sample conditional validity by leveraging prediction algorithms or posterior estimators that are currently widely adopted in SBI. WALDO reframes the well-known Wald test statistic, and uses a computationally efficient regression-based machinery for classical Neyman inversion of hypothesis tests. We apply our method to a recent high-energy physics problem, where prediction with DNNs has previously led to estimates with prediction bias. We also illustrate how our approach can correct overly confident posterior regions computed with normalizing flows.
Estimation-of-distribution algorithms (EDAs) are optimization algorithms that learn a distribution on the search space from which good solutions can be sampled easily. A key parameter of most EDAs is the sample size (population size). If the population size is too small, the update of the probabilistic model builds on few samples, leading to the undesired effect of genetic drift. Too large population sizes avoid genetic drift, but slow down the process. Building on a recent quantitative analysis of how the population size leads to genetic drift, we design a smart-restart mechanism for EDAs. By stopping runs when the risk for genetic drift is high, it automatically runs the EDA in good parameter regimes. Via a mathematical runtime analysis, we prove a general performance guarantee for this smart-restart scheme. This in particular shows that in many situations where the optimal (problem-specific) parameter values are known, the restart scheme automatically finds these, leading to the asymptotically optimal performance. We also conduct an extensive experimental analysis. On four classic benchmark problems, we clearly observe the critical influence of the population size on the performance, and we find that the smart-restart scheme leads to a performance close to the one obtainable with optimal parameter values. Our results also show that previous theory-based suggestions for the optimal population size can be far from the optimal ones, leading to a performance clearly inferior to the one obtained via the smart-restart scheme. We also conduct experiments with PBIL (cross-entropy algorithm) on two combinatorial optimization problems from the literature, the max-cut problem and the bipartition problem. Again, we observe that the smart-restart mechanism finds much better values for the population size than those suggested in the literature, leading to a much better performance.
Various real-world scientific applications involve the mathematical modeling of complex uncertain systems with numerous unknown parameters. Accurate parameter estimation is often practically infeasible in such systems, as the available training data may be insufficient and the cost of acquiring additional data may be high. In such cases, based on a Bayesian paradigm, we can design robust operators retaining the best overall performance across all possible models and design optimal experiments that can effectively reduce uncertainty to enhance the performance of such operators maximally. While objective-based uncertainty quantification (objective-UQ) based on MOCU (mean objective cost of uncertainty) provides an effective means for quantifying uncertainty in complex systems, the high computational cost of estimating MOCU has been a challenge in applying it to real-world scientific/engineering problems. In this work, we propose a novel scheme to reduce the computational cost for objective-UQ via MOCU based on a data-driven approach. We adopt a neural message-passing model for surrogate modeling, incorporating a novel axiomatic constraint loss that penalizes an increase in the estimated system uncertainty. As an illustrative example, we consider the optimal experimental design (OED) problem for uncertain Kuramoto models, where the goal is to predict the experiments that can most effectively enhance robust synchronization performance through uncertainty reduction. We show that our proposed approach can accelerate MOCU-based OED by four to five orders of magnitude, without any visible performance loss compared to the state-of-the-art. The proposed approach applies to general OED tasks, beyond the Kuramoto model.
In complex large-scale systems such as climate, important effects are caused by a combination of confounding processes that are not fully observable. The identification of sources from observations of system state is vital for attribution and prediction, which inform critical policy decisions. The difficulty of these types of inverse problems lies in the inability to isolate sources and the cost of simulating computational models. Surrogate models may enable the many-query algorithms required for source identification, but data challenges arise from high dimensionality of the state and source, limited ensembles of costly model simulations to train a surrogate model, and few and potentially noisy state observations for inversion due to measurement limitations. The influence of auxiliary processes adds an additional layer of uncertainty that further confounds source identification. We introduce a framework based on (1) calibrating deep neural network surrogates to the flow maps provided by an ensemble of simulations obtained by varying sources, and (2) using these surrogates in a Bayesian framework to identify sources from observations via optimization. Focusing on an atmospheric dispersion exemplar, we find that the expressive and computationally efficient nature of the deep neural network operator surrogates in appropriately reduced dimension allows for source identification with uncertainty quantification using limited data. Introducing a variable wind field as an auxiliary process, we find that a Bayesian approximation error approach is essential for reliable source inversion when uncertainty due to wind stresses the algorithm.
We revisit the Bayesian Context Trees (BCT) modelling framework for discrete time series, which was recently found to be very effective in numerous tasks including model selection, estimation and prediction. A novel representation of the induced posterior distribution on model space is derived in terms of a simple branching process, and several consequences of this are explored in theory and in practice. First, it is shown that the branching process representation leads to a simple variable-dimensional Monte Carlo sampler for the joint posterior distribution on models and parameters, which can efficiently produce independent samples. This sampler is found to be more efficient than earlier MCMC samplers for the same tasks. Then, the branching process representation is used to establish the asymptotic consistency of the BCT posterior, including the derivation of an almost-sure convergence rate. Finally, an extensive study is carried out on the performance of the induced Bayesian entropy estimator. Its utility is illustrated through both simulation experiments and real-world applications, where it is found to outperform several state-of-the-art methods.
We develop an optimization-based algorithm for parametric model order reduction (PMOR) of linear time-invariant dynamical systems. Our method aims at minimizing the $\mathcal{H}_\infty \otimes \mathcal{L}_\infty$ approximation error in the frequency and parameter domain by an optimization of the reduced order model (ROM) matrices. State-of-the-art PMOR methods often compute several nonparametric ROMs for different parameter samples, which are then combined to a single parametric ROM. However, these parametric ROMs can have a low accuracy between the utilized sample points. In contrast, our optimization-based PMOR method minimizes the approximation error across the entire parameter domain. Moreover, due to our flexible approach of optimizing the system matrices directly, we can enforce favorable features such as a port-Hamiltonian structure in our ROMs across the entire parameter domain. Our method is an extension of the recently developed SOBMOR-algorithm to parametric systems. We extend both the ROM parameterization and the adaptive sampling procedure to the parametric case. Several numerical examples demonstrate the effectiveness and high accuracy of our method in a comparison with other PMOR methods.
Inverse Reinforcement Learning (IRL) is a powerful paradigm for inferring a reward function from expert demonstrations. Many IRL algorithms require a known transition model and sometimes even a known expert policy, or they at least require access to a generative model. However, these assumptions are too strong for many real-world applications, where the environment can be accessed only through sequential interaction. We propose a novel IRL algorithm: Active exploration for Inverse Reinforcement Learning (AceIRL), which actively explores an unknown environment and expert policy to quickly learn the expert's reward function and identify a good policy. AceIRL uses previous observations to construct confidence intervals that capture plausible reward functions and find exploration policies that focus on the most informative regions of the environment. AceIRL is the first approach to active IRL with sample-complexity bounds that does not require a generative model of the environment. AceIRL matches the sample complexity of active IRL with a generative model in the worst case. Additionally, we establish a problem-dependent bound that relates the sample complexity of AceIRL to the suboptimality gap of a given IRL problem. We empirically evaluate AceIRL in simulations and find that it significantly outperforms more naive exploration strategies.
We propose an alternating direction method of multipliers (ADMM) to solve an optimization problem stemming from inverse lithography. The objective functional of the optimization problem includes three terms: the misfit between the imaging on wafer and the target pattern, the penalty term which ensures the mask is binary and the total variation regularization term. By variable splitting, we introduce an augmented Lagrangian for the original objective functional. In the framework of ADMM method, the optimization problem is divided into several subproblems. Each of the subproblems can be solved efficiently. We give the convergence analysis of the proposed method. Specially, instead of solving the subproblem concerning sigmoid, we solve directly the threshold truncation imaging function which can be solved analytically. We also provide many numerical examples to illustrate the effectiveness of the method.
Recent statistical methods fitted on large-scale GPS data can provide accurate estimations of the expected travel time between two points. However, little is known about the distribution of travel time, which is key to decision-making across a number of logistic problems. With sufficient data, single road-segment travel time can be well approximated. The challenge lies in understanding how to aggregate such information over a route to arrive at the route-distribution of travel time. We develop a novel statistical approach to this problem. We show that, under general conditions, without assuming a distribution of speed, travel time {divided by route distance follows a Gaussian distribution with route-invariant population mean and variance. We develop efficient inference methods for such parameters and propose asymptotically tight population prediction intervals for travel time. Using traffic flow information, we further develop a trip-specific Gaussian-based predictive distribution, resulting in tight prediction intervals for short and long trips. Our methods, implemented in an R-package, are illustrated in a real-world case study using mobile GPS data, showing that our trip-specific and population intervals both achieve the 95\% theoretical coverage levels. Compared to alternative approaches, our trip-specific predictive distribution achieves (a) the theoretical coverage at every level of significance, (b) tighter prediction intervals, (c) less predictive bias, and (d) more efficient estimation and prediction procedures. This makes our approach promising for low-latency, large-scale transportation applications.
We consider network games where a large number of agents interact according to a network sampled from a random network model, represented by a graphon. By exploiting previous results on convergence of such large network games to graphon games, we examine a procedure for estimating unknown payoff parameters, from observations of equilibrium actions, without the need for exact network information. We prove smoothness and local convexity of the optimization problem involved in computing the proposed estimator. Additionally, under a notion of graphon parameter identifiability, we show that the optimal estimator is globally unique. We present several examples of identifiable homogeneous and heterogeneous parameters in different classes of linear quadratic network games with numerical simulations to validate the proposed estimator.
Background: In medical imaging, images are usually treated as deterministic, while their uncertainties are largely underexplored. Purpose: This work aims at using deep learning to efficiently estimate posterior distributions of imaging parameters, which in turn can be used to derive the most probable parameters as well as their uncertainties. Methods: Our deep learning-based approaches are based on a variational Bayesian inference framework, which is implemented using two different deep neural networks based on conditional variational auto-encoder (CVAE), CVAE-dual-encoder and CVAE-dual-decoder. The conventional CVAE framework, i.e., CVAE-vanilla, can be regarded as a simplified case of these two neural networks. We applied these approaches to a simulation study of dynamic brain PET imaging using a reference region-based kinetic model. Results: In the simulation study, we estimated posterior distributions of PET kinetic parameters given a measurement of time-activity curve. Our proposed CVAE-dual-encoder and CVAE-dual-decoder yield results that are in good agreement with the asymptotically unbiased posterior distributions sampled by Markov Chain Monte Carlo (MCMC). The CVAE-vanilla can also be used for estimating posterior distributions, although it has an inferior performance to both CVAE-dual-encoder and CVAE-dual-decoder. Conclusions: We have evaluated the performance of our deep learning approaches for estimating posterior distributions in dynamic brain PET. Our deep learning approaches yield posterior distributions, which are in good agreement with unbiased distributions estimated by MCMC. All these neural networks have different characteristics and can be chosen by the user for specific applications. The proposed methods are general and can be adapted to other problems.