亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To detect unmanned aerial vehicles (UAVs) in real-time, computer vision and deep learning approaches are evolving research areas. Interest in this problem has grown due to concerns regarding the possible hazards and misuse of employing UAVs in many applications. These include potential privacy violations. To address the concerns, vision-based object detection methods have been developed for UAV detection. However, UAV detection in images with complex backgrounds and weather artifacts like rain has yet to be reasonably studied. Hence, for this purpose, we prepared two training datasets. The first dataset has the sky as its background and is called the Sky Background Dataset (SBD). The second training dataset has more complex scenes (with diverse backgrounds) and is named the Complex Background Dataset (CBD). Additionally, two test sets were prepared: one containing clear images and the other with images with three rain artifacts, named the Rainy Test Set (RTS). This work also focuses on benchmarking state-of-the-art object detection models, and to the best of our knowledge, it is the first to investigate the performance of recent and popular vision-based object detection methods for UAV detection under challenging conditions such as complex backgrounds, varying UAV sizes, and low-to-heavy rainy conditions. The findings presented in the paper shall help provide insights concerning the performance of the selected models for UAV detection under challenging conditions and pave the way to develop more robust UAV detection methods. The codes and datasets are available at: //github.com/AdnanMunir294/UAVD-CBRA.

相關內容

Mobile edge computing (MEC) is powerful to alleviate the heavy computing tasks in integrated sensing and communication (ISAC) systems. In this paper, we investigate joint beamforming and offloading design in a three-tier integrated sensing, communication and computation (ISCC) framework comprising one cloud server, multiple mobile edge servers, and multiple terminals. While executing sensing tasks, the user terminals can optionally offload sensing data to either MEC server or cloud servers. To minimize the execution latency, we jointly optimize the transmit beamforming matrices and offloading decision variables under the constraint of sensing performance. An alternating optimization algorithm based on multidimensional fractional programming is proposed to tackle the non-convex problem. Simulation results demonstrates the superiority of the proposed mechanism in terms of convergence and task execution latency reduction, compared with the state-of-the-art two-tier ISCC framework.

Biometric authentication prospered because of its convenient use and security. Early generations of biometric mechanisms suffer from spoofing attacks. Recently, unobservable physiological signals (e.g., Electroencephalogram, Photoplethysmogram, Electrocardiogram) as biometrics offer a potential remedy to this problem. In particular, Photoplethysmogram (PPG) measures the change in blood flow of the human body by an optical method. Clinically, researchers commonly use PPG signals to obtain patients' blood oxygen saturation, heart rate, and other information to assist in diagnosing heart-related diseases. Since PPG signals contain a wealth of individual cardiac information, researchers have begun to explore their potential in cyber security applications. The unique advantages (simple acquisition, difficult to steal, and live detection) of the PPG signal allow it to improve the security and usability of the authentication in various aspects. However, the research on PPG-based authentication is still in its infancy. The lack of systematization hinders new research in this field. We conduct a comprehensive study of PPG-based authentication and discuss these applications' limitations before pointing out future research directions.

Foundation vision or vision-language models are trained on large unlabeled or noisy data and learn robust representations that can achieve impressive zero- or few-shot performance on diverse tasks. Given these properties, they are a natural fit for active learning (AL), which aims to maximize labeling efficiency, but the full potential of foundation models has not been explored in the context of AL, specifically in the low-budget regime. In this work, we evaluate how foundation models influence three critical components of effective AL, namely, 1) initial labeled pool selection, 2) ensuring diverse sampling, and 3) the trade-off between representative and uncertainty sampling. We systematically study how the robust representations of foundation models (DINOv2, OpenCLIP) challenge existing findings in active learning. Our observations inform the principled construction of a new simple and elegant AL strategy that balances uncertainty estimated via dropout with sample diversity. We extensively test our strategy on many challenging image classification benchmarks, including natural images as well as out-of-domain biomedical images that are relatively understudied in the AL literature. Source code will be made available.

The remarkable progress of deep learning in dermatological tasks has brought us closer to achieving diagnostic accuracies comparable to those of human experts. However, while large datasets play a crucial role in the development of reliable deep neural network models, the quality of data therein and their correct usage are of paramount importance. Several factors can impact data quality, such as the presence of duplicates, data leakage across train-test partitions, mislabeled images, and the absence of a well-defined test partition. In this paper, we conduct meticulous analyses of two popular dermatological image datasets: DermaMNIST and Fitzpatrick17k, uncovering these data quality issues, measure the effects of these problems on the benchmark results, and propose corrections to the datasets. Besides ensuring the reproducibility of our analysis, by making our analysis pipeline and the accompanying code publicly available, we aim to encourage similar explorations and to facilitate the identification and addressing of potential data quality issues in other large datasets.

Correlation clustering is a well-known unsupervised learning setting that deals with positive and negative pairwise similarities. In this paper, we study the case where the pairwise similarities are not given in advance and must be queried in a cost-efficient way. Thereby, we develop a generic active learning framework for this task that benefits from several advantages, e.g., flexibility in the type of feedback that a user/annotator can provide, adaptation to any correlation clustering algorithm and query strategy, and robustness to noise. In addition, we propose and analyze a number of novel query strategies suited to this setting. We demonstrate the effectiveness of our framework and the proposed query strategies via several experimental studies.

Recent advances in multi-agent reinforcement learning (MARL) are enabling impressive coordination in heterogeneous multi-robot teams. However, existing approaches often overlook the challenge of generalizing learned policies to teams of new compositions, sizes, and robots. While such generalization might not be important in teams of virtual agents that can retrain policies on-demand, it is pivotal in multi-robot systems that are deployed in the real-world and must readily adapt to inevitable changes. As such, multi-robot policies must remain robust to team changes -- an ability we call adaptive teaming. In this work, we investigate if awareness and communication of robot capabilities can provide such generalization by conducting detailed experiments involving an established multi-robot test bed. We demonstrate that shared decentralized policies, that enable robots to be both aware of and communicate their capabilities, can achieve adaptive teaming by implicitly capturing the fundamental relationship between collective capabilities and effective coordination. Videos of trained policies can be viewed at: //sites.google.com/view/cap-comm

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司