Nearest-neighbor methods have become popular in statistics and play a key role in statistical learning. Important decisions in nearest-neighbor methods concern the variables to use (when many potential candidates exist) and how to measure the dissimilarity between units. The first decision depends on the scope of the application while second depends mainly on the type of variables. Unfortunately, relatively few options permit to handle mixed-type variables, a situation frequently encountered in practical applications. The most popular dissimilarity for mixed-type variables is derived as the complement to one of the Gower's similarity coefficient. It is appealing because ranges between 0 and 1, being an average of the scaled dissimilarities calculated variable by variable, handles missing values and allows for a user-defined weighting scheme when averaging dissimilarities. The discussion on the weighting schemes is sometimes misleading since it often ignores that the unweighted "standard" setting hides an unbalanced contribution of the single variables to the overall dissimilarity. We address this drawback following the recent idea of introducing a weighting scheme that minimizes the differences in the correlation between each contributing dissimilarity and the resulting weighted Gower's dissimilarity. In particular, this note proposes different approaches for measuring the correlation depending on the type of variables. The performances of the proposed approaches are evaluated in simulation studies related to classification and imputation of missing values.
We propose a new approach to the autoregressive spatial functional model, based on the notion of signature, which represents a function as an infinite series of its iterated integrals. It presents the advantage of being applicable to a wide range of processes. After having provided theoretical guarantees to the proposed model, we have shown in a simulation study and on a real data set that this new approach presents competitive performances compared to the traditional model.
We propose a game-based formulation for learning dimensionality-reducing representations of feature vectors, when only a prior knowledge on future prediction tasks is available. In this game, the first player chooses a representation, and then the second player adversarially chooses a prediction task from a given class, representing the prior knowledge. The first player aims is to minimize, and the second player to maximize, the regret: The minimal prediction loss using the representation, compared to the same loss using the original features. For the canonical setting in which the representation, the response to predict and the predictors are all linear functions, and under the mean squared error loss function, we derive the theoretically optimal representation in pure strategies, which shows the effectiveness of the prior knowledge, and the optimal regret in mixed strategies, which shows the usefulness of randomizing the representation. For general representations and loss functions, we propose an efficient algorithm to optimize a randomized representation. The algorithm only requires the gradients of the loss function, and is based on incrementally adding a representation rule to a mixture of such rules.
In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.
Charts, figures, and text derived from data play an important role in decision making, from data-driven policy development to day-to-day choices informed by online articles. Making sense of, or fact-checking, outputs means understanding how they relate to the underlying data. Even for domain experts with access to the source code and data sets, this poses a significant challenge. In this paper we introduce a new program analysis framework which supports interactive exploration of fine-grained I/O relationships directly through computed outputs, making use of dynamic dependence graphs. Our main contribution is a novel notion in data provenance which we call related inputs, a relation of mutual relevance or "cognacy" which arises between inputs when they contribute to common features of the output. Queries of this form allow readers to ask questions like "What outputs use this data element, and what other data elements are used along with it?". We show how Jonsson and Tarski's concept of conjugate operators on Boolean algebras appropriately characterises the notion of cognacy in a dependence graph, and give a procedure for computing related inputs over such a graph.
This article is concerned with the multilevel Monte Carlo (MLMC) methods for approximating expectations of some functions of the solution to the Heston 3/2-model from mathematical finance, which takes values in $(0, \infty)$ and possesses superlinearly growing drift and diffusion coefficients. To discretize the SDE model, a new Milstein-type scheme is proposed to produce independent sample paths. The proposed scheme can be explicitly solved and is positivity-preserving unconditionally, i.e., for any time step-size $h>0$. This positivity-preserving property for large discretization time steps is particularly desirable in the MLMC setting. Furthermore, a mean-square convergence rate of order one is proved in the non-globally Lipschitz regime, which is not trivial, as the diffusion coefficient grows super-linearly. The obtained order-one convergence in turn promises the desired relevant variance of the multilevel estimator and justifies the optimal complexity $\mathcal{O}(\epsilon^{-2})$ for the MLMC approach, where $\epsilon > 0$ is the required target accuracy. Numerical experiments are finally reported to confirm the theoretical findings.
In this paper, we propose a new modified likelihood ratio test (LRT) for simultaneously testing mean vectors and covariance matrices of two-sample populations in high-dimensional settings. By employing tools from Random Matrix Theory (RMT), we derive the limiting null distribution of the modified LRT for generally distributed populations. Furthermore, we compare the proposed test with existing tests using simulation results, demonstrating that the modified LRT exhibits favorable properties in terms of both size and power.
The sparsity-ranked lasso (SRL) has been developed for model selection and estimation in the presence of interactions and polynomials. The main tenet of the SRL is that an algorithm should be more skeptical of higher-order polynomials and interactions *a priori* compared to main effects, and hence the inclusion of these more complex terms should require a higher level of evidence. In time series, the same idea of ranked prior skepticism can be applied to the possibly seasonal autoregressive (AR) structure of the series during the model fitting process, becoming especially useful in settings with uncertain or multiple modes of seasonality. The SRL can naturally incorporate exogenous variables, with streamlined options for inference and/or feature selection. The fitting process is quick even for large series with a high-dimensional feature set. In this work, we discuss both the formulation of this procedure and the software we have developed for its implementation via the **fastTS** R package. We explore the performance of our SRL-based approach in a novel application involving the autoregressive modeling of hourly emergency room arrivals at the University of Iowa Hospitals and Clinics. We find that the SRL is considerably faster than its competitors, while producing more accurate predictions.
To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.
The purpose of this study is to introduce a new approach to feature ranking for classification tasks, called in what follows greedy feature selection. In statistical learning, feature selection is usually realized by means of methods that are independent of the classifier applied to perform the prediction using that reduced number of features. Instead, greedy feature selection identifies the most important feature at each step and according to the selected classifier. In the paper, the benefits of such scheme are investigated theoretically in terms of model capacity indicators, such as the Vapnik-Chervonenkis (VC) dimension or the kernel alignment, and tested numerically by considering its application to the problem of predicting geo-effective manifestations of the active Sun.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.