This volume contains the articles presented at The 2023 Scheme and Functional Programming Workshop in Seattle, Washington on September 9, 2023. The program committee reviewed the articles using current academic standards and selected four articles for presentation. These proceedings are considered non-archival and the authors are free to submit revised versions of their articles to other venues for archival publication. Program Committee: Leif Andersen, Northeastern University; Mark Friedman Leilani Gilpin, University of California, Santa Cruz; Jason Hemann, Seton Hall University Julia Lawall, Inria; Joe Gibbs Politz, University of California at San Diego; Marco T Moraz\'an (Chair), Seton Hall University
The online manipulation-resilient testing model, proposed by Kalemaj, Raskhodnikova and Varma (ITCS 2022 and Theory of Computing 2023), studies property testing in situations where access to the input degrades continuously and adversarially. Specifically, after each query made by the tester is answered, the adversary can intervene and either erase or corrupt $t$ data points. In this work, we investigate a more nuanced version of the online model in order to overcome old and new impossibility results for the original model. We start by presenting an optimal tester for linearity and a lower bound for low-degree testing of Boolean functions in the original model. We overcome the lower bound by allowing batch queries, where the tester gets a group of queries answered between manipulations of the data. Our batch size is small enough so that function values for a single batch on their own give no information about whether the function is of low degree. Finally, to overcome the impossibility results of Kalemaj et al. for sortedness and the Lipschitz property of sequences, we extend the model to include $t<1$, i.e., adversaries that make less than one erasure per query. For sortedness, we characterize the rate of erasures for which online testing can be performed, exhibiting a sharp transition from optimal query complexity to impossibility of testability (with any number of queries). Our online tester works for a general class of local properties of sequences. One feature of our results is that we get new (and in some cases, simpler) optimal algorithms for several properties in the standard property testing model.
Since the seminal result of Karger, Motwani, and Sudan, algorithms for approximate 3-coloring have primarily centered around SDP-based rounding. However, it is likely that important combinatorial or algebraic insights are needed in order to break the $n^{o(1)}$ threshold. One way to develop new understanding in graph coloring is to study special subclasses of graphs. For instance, Blum studied the 3-coloring of random graphs, and Arora and Ge studied the 3-coloring of graphs with low threshold-rank. In this work, we study graphs which arise from a tensor product, which appear to be novel instances of the 3-coloring problem. We consider graphs of the form $H = (V,E)$ with $V =V( K_3 \times G)$ and $E = E(K_3 \times G) \setminus E'$, where $E' \subseteq E(K_3 \times G)$ is any edge set such that no vertex has more than an $\epsilon$ fraction of its edges in $E'$. We show that one can construct $\widetilde{H} = K_3 \times \widetilde{G}$ with $V(\widetilde{H}) = V(H)$ that is close to $H$. For arbitrary $G$, $\widetilde{H}$ satisfies $|E(H) \Delta E(\widetilde{H})| \leq O(\epsilon|E(H)|)$. Additionally when $G$ is a mild expander, we provide a 3-coloring for $H$ in polynomial time. These results partially generalize an exact tensor factorization algorithm of Imrich. On the other hand, without any assumptions on $G$, we show that it is NP-hard to 3-color $H$.
This report presents our Le3DE2E_Occ solution for 4D Occupancy Forecasting in Argoverse Challenges at CVPR 2023 Workshop on Autonomous Driving (WAD). Our solution consists of a strong LiDAR-based Bird's Eye View (BEV) encoder with temporal fusion and a two-stage decoder, which combines a DETR head and a UNet decoder. The solution was tested on the Argoverse 2 sensor dataset to evaluate the occupancy state 3 seconds in the future. Our solution achieved 18% lower L1 Error (3.57) than the baseline and got the 1 place on the 4D Occupancy Forecasting task in Argoverse Challenges at CVPR 2023.
We present Paint Neural Stroke Field (PaintNeSF), a novel technique to generate stylized images of a 3D scene at arbitrary novel views from multi-view 2D images. Different from existing methods which apply stylization to trained neural radiance fields at the voxel level, our approach draws inspiration from image-to-painting methods, simulating the progressive painting process of human artwork with vector strokes. We develop a palette of stylized 3D strokes from basic primitives and splines, and consider the 3D scene stylization task as a multi-view reconstruction process based on these 3D stroke primitives. Instead of directly searching for the parameters of these 3D strokes, which would be too costly, we introduce a differentiable renderer that allows optimizing stroke parameters using gradient descent, and propose a training scheme to alleviate the vanishing gradient issue. The extensive evaluation demonstrates that our approach effectively synthesizes 3D scenes with significant geometric and aesthetic stylization while maintaining a consistent appearance across different views. Our method can be further integrated with style loss and image-text contrastive models to extend its applications, including color transfer and text-driven 3D scene drawing.
This study presents new closed-form estimators for the Dirichlet and the Multivariate Gamma distribution families, whose maximum likelihood estimator cannot be explicitly derived. The methodology builds upon the score-adjusted estimators for the Beta and Gamma distributions, extending their applicability to the Dirichlet and Multivariate Gamma distributions. Expressions for the asymptotic variance-covariance matrices are provided, demonstrating the superior performance of score-adjusted estimators over the traditional moment ones. Leveraging well-established connections between Dirichlet and Multivariate Gamma distributions, a novel class of estimators for the latter is introduced, referred to as "Dirichlet-based moment-type estimators". The general asymptotic variance-covariance matrix form for this estimator class is derived. To facilitate the application of these innovative estimators, an R package called estimators is developed and made publicly available.
With the recent advent of Large Language Models (LLMs), such as ChatGPT from OpenAI, BARD from Google, Llama2 from Meta, and Claude from Anthropic AI, gain widespread use, ensuring their security and robustness is critical. The widespread use of these language models heavily relies on their reliability and proper usage of this fascinating technology. It is crucial to thoroughly test these models to not only ensure its quality but also possible misuses of such models by potential adversaries for illegal activities such as hacking. This paper presents a novel study focusing on exploitation of such large language models against deceptive interactions. More specifically, the paper leverages widespread and borrows well-known techniques in deception theory to investigate whether these models are susceptible to deceitful interactions. This research aims not only to highlight these risks but also to pave the way for robust countermeasures that enhance the security and integrity of language models in the face of sophisticated social engineering tactics. Through systematic experiments and analysis, we assess their performance in these critical security domains. Our results demonstrate a significant finding in that these large language models are susceptible to deception and social engineering attacks.
Nowadays, the research on Large Vision-Language Models (LVLMs) has been significantly promoted thanks to the success of Large Language Models (LLM). Nevertheless, these Vision-Language Models (VLMs) are suffering from the drawback of hallucination -- due to insufficient understanding of vision and language modalities, VLMs may generate incorrect perception information when doing downstream applications, for example, captioning a non-existent entity. To address the hallucination phenomenon, on the one hand, we introduce a Contrastive Instruction Evaluation Method (CIEM), which is an automatic pipeline that leverages an annotated image-text dataset coupled with an LLM to generate factual/contrastive question-answer pairs for the evaluation of the hallucination of VLMs. On the other hand, based on CIEM, we further propose a new instruction tuning method called CIT (the abbreviation of Contrastive Instruction Tuning) to alleviate the hallucination of VLMs by automatically producing high-quality factual/contrastive question-answer pairs and corresponding justifications for model tuning. Through extensive experiments on CIEM and CIT, we pinpoint the hallucination issues commonly present in existing VLMs, the disability of the current instruction-tuning dataset to handle the hallucination phenomenon and the superiority of CIT-tuned VLMs over both CIEM and public datasets.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.