The progress of Natural Language Processing (NLP), although fast in recent years, is not at the same pace for all languages. African languages in particular are still behind and lack automatic processing tools. Some of these tools are very important for the development of these languages but also have an important role in many NLP applications. This is particularly the case for automatic spell checkers. Several approaches have been studied to address this task and the one modeling spelling correction as a translation task from misspelled (noisy) text to well-spelled (correct) text shows promising results. However, this approach requires a parallel corpus of noisy data on the one hand and correct data on the other hand, whereas Wolof is a low-resource language and does not have such a corpus. In this paper, we present a way to address the constraint related to the lack of data by generating synthetic data and we present sequence-to-sequence models using Deep Learning for spelling correction in Wolof. We evaluated these models in three different scenarios depending on the subwording method applied to the data and showed that the latter had a significant impact on the performance of the models, which opens the way for future research in Wolof spelling correction.
Audio source separation is often achieved by estimating the magnitude spectrogram of each source, and then applying a phase recovery (or spectrogram inversion) algorithm to retrieve time-domain signals. Typically, spectrogram inversion is treated as an optimization problem involving one or several terms in order to promote estimates that comply with a consistency property, a mixing constraint, and/or a target magnitude objective. Nonetheless, it is still unclear which set of constraints and problem formulation is the most appropriate in practice. In this paper, we design a general framework for deriving spectrogram inversion algorithm, which is based on formulating optimization problems by combining these objectives either as soft penalties or hard constraints. We solve these by means of algorithms that perform alternating projections on the subsets corresponding to each objective/constraint. Our framework encompasses existing techniques from the literature as well as novel algorithms. We investigate the potential of these approaches for a speech enhancement task. In particular, one of our novel algorithms outperforms other approaches in a realistic setting where the magnitudes are estimated beforehand using a neural network.
Voicebots have provided a new avenue for supporting the development of language skills, particularly within the context of second language learning. Voicebots, though, have largely been geared towards native adult speakers. We sought to assess the performance of two state-of-the-art ASR systems, Wav2Vec2.0 and Whisper AI, with a view to developing a voicebot that can support children acquiring a foreign language. We evaluated their performance on read and extemporaneous speech of native and non-native Dutch children. We also investigated the utility of using ASR technology to provide insight into the children's pronunciation and fluency. The results show that recent, pre-trained ASR transformer-based models achieve acceptable performance from which detailed feedback on phoneme pronunciation quality can be extracted, despite the challenging nature of child and non-native speech.
Social world knowledge is a key ingredient in effective communication and information processing by humans and machines alike. As of today, there exist many knowledge bases that represent factual world knowledge. Yet, there is no resource that is designed to capture social aspects of world knowledge. We believe that this work makes an important step towards the formulation and construction of such a resource. We introduce SocialVec, a general framework for eliciting low-dimensional entity embeddings from the social contexts in which they occur in social networks. In this framework, entities correspond to highly popular accounts which invoke general interest. We assume that entities that individual users tend to co-follow are socially related, and use this definition of social context to learn the entity embeddings. Similar to word embeddings which facilitate tasks that involve text semantics, we expect the learned social entity embeddings to benefit multiple tasks of social flavor. In this work, we elicited the social embeddings of roughly 200K entities from a sample of 1.3M Twitter users and the accounts that they follow. We employ and gauge the resulting embeddings on two tasks of social importance. First, we assess the political bias of news sources in terms of entity similarity in the social embedding space. Second, we predict the personal traits of individual Twitter users based on the social embeddings of entities that they follow. In both cases, we show advantageous or competitive performance using our approach compared with task-specific baselines. We further show that existing entity embedding schemes, which are fact-based, fail to capture social aspects of knowledge. We make the learned social entity embeddings available to the research community to support further exploration of social world knowledge and its applications.
Despite significant effort, the quantum machine learning community has only demonstrated quantum learning advantages for artificial cryptography-inspired datasets when dealing with classical data. In this paper we address the challenge of finding learning problems where quantum learning algorithms can achieve a provable exponential speedup over classical learning algorithms. We reflect on computational learning theory concepts related to this question and discuss how subtle differences in definitions can result in significantly different requirements and tasks for the learner to meet and solve. We examine existing learning problems with provable quantum speedups and find that they largely rely on the classical hardness of evaluating the function that generates the data, rather than identifying it. To address this, we present two new learning separations where the classical difficulty primarily lies in identifying the function generating the data. Furthermore, we explore computational hardness assumptions that can be leveraged to prove quantum speedups in scenarios where data is quantum-generated, which implies likely quantum advantages in a plethora of more natural settings (e.g., in condensed matter and high energy physics). We also discuss the limitations of the classical shadow paradigm in the context of learning separations, and how physically-motivated settings such as characterizing phases of matter and Hamiltonian learning fit in the computational learning framework.
Recent research on Large Language Models (LLMs) has led to remarkable advancements in general NLP AI assistants. Some studies have further explored the use of LLMs for planning and invoking models or APIs to address more general multi-modal user queries. Despite this progress, complex visual-based tasks still remain challenging due to the diverse nature of visual tasks. This diversity is reflected in two aspects: 1) Reasoning paths. For many real-life applications, it is hard to accurately decompose a query simply by examining the query itself. Planning based on the specific visual content and the results of each step is usually required. 2) Flexible inputs and intermediate results. Input forms could be flexible for in-the-wild cases, and involves not only a single image or video but a mixture of videos and images, e.g., a user-view image with some reference videos. Besides, a complex reasoning process will also generate diverse multimodal intermediate results, e.g., video narrations, segmented video clips, etc. To address such general cases, we propose a multi-modal AI assistant, AssistGPT, with an interleaved code and language reasoning approach called Plan, Execute, Inspect, and Learn (PEIL) to integrate LLMs with various tools. Specifically, the Planner is capable of using natural language to plan which tool in Executor should do next based on the current reasoning progress. Inspector is an efficient memory manager to assist the Planner to feed proper visual information into a specific tool. Finally, since the entire reasoning process is complex and flexible, a Learner is designed to enable the model to autonomously explore and discover the optimal solution. We conducted experiments on A-OKVQA and NExT-QA benchmarks, achieving state-of-the-art results. Moreover, showcases demonstrate the ability of our system to handle questions far more complex than those found in the benchmarks.
Recommender systems (RS) play important roles to match users' information needs for Internet applications. In natural language processing (NLP) domains, large language model (LLM) has shown astonishing emergent abilities (e.g., instruction following, reasoning), thus giving rise to the promising research direction of adapting LLM to RS for performance enhancements and user experience improvements. In this paper, we conduct a comprehensive survey on this research direction from an application-oriented view. We first summarize existing research works from two orthogonal perspectives: where and how to adapt LLM to RS. For the "WHERE" question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e., feature engineering, feature encoder, scoring/ranking function, and pipeline controller. For the "HOW" question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e., whether to tune LLMs or not, and whether to involve conventional recommendation model (CRM) for inference. Detailed analysis and general development trajectories are provided for both questions, respectively. Then, we highlight key challenges in adapting LLM to RS from three aspects, i.e., efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects. We also actively maintain a GitHub repository for papers and other related resources in this rising direction: //github.com/CHIANGEL/Awesome-LLM-for-RecSys.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.