While the empirical success of self-supervised learning (SSL) heavily relies on the usage of deep nonlinear models, existing theoretical works on SSL understanding still focus on linear ones. In this paper, we study the role of nonlinearity in the training dynamics of contrastive learning (CL) on one and two-layer nonlinear networks with homogeneous activation $h(x) = h'(x)x$. We have two major theoretical discoveries. First, the presence of nonlinearity can lead to many local optima even in 1-layer setting, each corresponding to certain patterns from the data distribution, while with linear activation, only one major pattern can be learned. This suggests that models with lots of parameters can be regarded as a \emph{brute-force} way to find these local optima induced by nonlinearity. Second, in the 2-layer case, linear activation is proven not capable of learning specialized weights into diverse patterns, demonstrating the importance of nonlinearity. In addition, for 2-layer setting, we also discover \emph{global modulation}: those local patterns discriminative from the perspective of global-level patterns are prioritized to learn, further characterizing the learning process. Simulation verifies our theoretical findings.
Inverse reinforcement learning (IRL) denotes a powerful family of algorithms for recovering a reward function justifying the behavior demonstrated by an expert agent. A well-known limitation of IRL is the ambiguity in the choice of the reward function, due to the existence of multiple rewards that explain the observed behavior. This limitation has been recently circumvented by formulating IRL as the problem of estimating the feasible reward set, i.e., the region of the rewards compatible with the expert's behavior. In this paper, we make a step towards closing the theory gap of IRL in the case of finite-horizon problems with a generative model. We start by formally introducing the problem of estimating the feasible reward set, the corresponding PAC requirement, and discussing the properties of particular classes of rewards. Then, we provide the first minimax lower bound on the sample complexity for the problem of estimating the feasible reward set of order ${\Omega}\Bigl( \frac{H^3SA}{\epsilon^2} \bigl( \log \bigl(\frac{1}{\delta}\bigl) + S \bigl)\Bigl)$, being $S$ and $A$ the number of states and actions respectively, $H$ the horizon, $\epsilon$ the desired accuracy, and $\delta$ the confidence. We analyze the sample complexity of a uniform sampling strategy (US-IRL), proving a matching upper bound up to logarithmic factors. Finally, we outline several open questions in IRL and propose future research directions.
Despite the significant recent progress in deep generative models, the underlying structure of their latent spaces is still poorly understood, thereby making the task of performing semantically meaningful latent traversals an open research challenge. Most prior work has aimed to solve this challenge by modeling latent structures linearly, and finding corresponding linear directions which result in `disentangled' generations. In this work, we instead propose to model latent structures with a learned dynamic potential landscape, thereby performing latent traversals as the flow of samples down the landscape's gradient. Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations, thereby allowing them to flexibly vary over both space and time. To achieve disentanglement, multiple potentials are learned simultaneously, and are constrained by a classifier to be distinct and semantically self-consistent. Experimentally, we demonstrate that our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines. Further, we demonstrate that our method can be integrated as a regularization term during training, thereby acting as an inductive bias towards the learning of structured representations, ultimately improving model likelihood on similarly structured data.
Bayesian Additive Regression Trees (BART) are a powerful semiparametric ensemble learning technique for modeling nonlinear regression functions. Although initially BART was proposed for predicting only continuous and binary response variables, over the years multiple extensions have emerged that are suitable for estimating a wider class of response variables (e.g. categorical and count data) in a multitude of application areas. In this paper we describe a Generalized framework for Bayesian trees and their additive ensembles where the response variable comes from an exponential family distribution and hence encompasses a majority of these variants of BART. We derive sufficient conditions on the response distribution, under which the posterior concentrates at a minimax rate, up to a logarithmic factor. In this regard our results provide theoretical justification for the empirical success of BART and its variants.
As data-driven methods are deployed in real-world settings, the processes that generate the observed data will often react to the decisions of the learner. For example, a data source may have some incentive for the algorithm to provide a particular label (e.g. approve a bank loan), and manipulate their features accordingly. Work in strategic classification and decision-dependent distributions seeks to characterize the closed-loop behavior of deploying learning algorithms by explicitly considering the effect of the classifier on the underlying data distribution. More recently, works in performative prediction seek to classify the closed-loop behavior by considering general properties of the mapping from classifier to data distribution, rather than an explicit form. Building on this notion, we analyze repeated risk minimization as the perturbed trajectories of the gradient flows of performative risk minimization. We consider the case where there may be multiple local minimizers of performative risk, motivated by situations where the initial conditions may have significant impact on the long-term behavior of the system. We provide sufficient conditions to characterize the region of attraction for the various equilibria in this settings. Additionally, we introduce the notion of performative alignment, which provides a geometric condition on the convergence of repeated risk minimization to performative risk minimizers.
A central task in control theory, artificial intelligence, and formal methods is to synthesize reward-maximizing strategies for agents that operate in partially unknown environments. In environments modeled by gray-box Markov decision processes (MDPs), the impact of the agents' actions are known in terms of successor states but not the stochastics involved. In this paper, we devise a strategy synthesis algorithm for gray-box MDPs via reinforcement learning that utilizes interval MDPs as internal model. To compete with limited sampling access in reinforcement learning, we incorporate two novel concepts into our algorithm, focusing on rapid and successful learning rather than on stochastic guarantees and optimality: lower confidence bound exploration reinforces variants of already learned practical strategies and action scoping reduces the learning action space to promising actions. We illustrate benefits of our algorithms by means of a prototypical implementation applied on examples from the AI and formal methods communities.
Practitioners often use data from a randomized controlled trial to learn a treatment assignment policy that can be deployed on a target population. A recurring concern in doing so is that, even if the randomized trial was well-executed (i.e., internal validity holds), the study participants may not represent a random sample of the target population (i.e., external validity fails)--and this may lead to policies that perform suboptimally on the target population. We consider a model where observable attributes can impact sample selection probabilities arbitrarily but the effect of unobservable attributes is bounded by a constant, and we aim to learn policies with the best possible performance guarantees that hold under any sampling bias of this type. In particular, we derive the partial identification result for the worst-case welfare in the presence of sampling bias and show that the optimal max-min, max-min gain, and minimax regret policies depend on both the conditional average treatment effect (CATE) and the conditional value-at-risk (CVaR) of potential outcomes given covariates. To avoid finite-sample inefficiencies of plug-in estimates, we further provide an end-to-end procedure for learning the optimal max-min and max-min gain policies that does not require the separate estimation of nuisance parameters.
A common explanation for the failure of out-of-distribution (OOD) generalization is that the model trained with empirical risk minimization (ERM) learns spurious features instead of the desired invariant features. However, several recent studies challenged this explanation and found that deep networks may have already learned sufficiently good features for OOD generalization. The debate extends to the in-distribution and OOD performance correlations along with training or fine-tuning neural nets across a variety of OOD generalization tasks. To understand these seemingly contradicting phenomena, we conduct a theoretical investigation and find that ERM essentially learns both spurious features and invariant features. On the other hand, the quality of learned features during ERM pre-training significantly affects the final OOD performance, as OOD objectives rarely learn new features. Failing to capture all the underlying useful features during pre-training will further limit the final OOD performance. To remedy the issue, we propose Feature Augmented Training (FAT ), to enforce the model to learn all useful features by retaining the already learned features and augmenting new ones by multiple rounds. In each round, the retention and augmentation operations are performed on different subsets of the training data that capture distinct features. Extensive experiments show that FAT effectively learns richer features and consistently improves the OOD performance when applied to various objectives.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.